Heping

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6009040/publications.pdf

Version: 2024-02-01

HEDING

#	Article	IF	CITATIONS
1	Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. Journal of the American Chemical Society, 2016, 138, 5897-5903.	13.7	613
2	A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. Journal of Materials Chemistry A, 2018, 6, 13331-13339.	10.3	241
3	Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosensors and Bioelectronics, 2016, 85, 287-293.	10.1	163
4	A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity. Chemical Communications, 2013, 49, 9773.	4.1	161
5	Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. Journal of Materials Chemistry, 2011, 21, 13498.	6.7	146
6	Highly Selective and Permeable Porous Organic Framework Membrane for CO ₂ Capture. Advanced Materials, 2014, 26, 3644-3648.	21.0	144
7	Synthesis of a porous aromatic framework for adsorbing organic pollutants application. Journal of Materials Chemistry, 2011, 21, 10348.	6.7	138
8	A nanoscaled lanthanide metal–organic framework as a colorimetric fluorescence sensor for dipicolinic acid based on modulating energy transfer. Journal of Materials Chemistry C, 2016, 4, 7294-7301.	5.5	131
9	Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol–melamine–formaldehyde resin. Microporous and Mesoporous Materials, 2014, 190, 117-127.	4.4	113
10	An RGH–MOF as a naked eye colorimetric fluorescent sensor for picric acid recognition. Journal of Materials Chemistry C, 2017, 5, 4661-4669.	5.5	109
11	Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO ₂ + N ₂ and CH ₄ + N ₂ mixtures. Polymer Chemistry, 2014, 5, 144-152.	3.9	101
12	Novel lithium-loaded porous aromatic framework for efficient CO ₂ and H ₂ uptake. Journal of Materials Chemistry A, 2013, 1, 752-758.	10.3	88
13	A facile approach to prepare porphyrinic porous aromatic frameworks for small hydrocarbon separation. Journal of Materials Chemistry A, 2014, 2, 14536-14541.	10.3	82
14	Combining Ruthenium(II) Complexes with Metal–Organic Frameworks to Realize Effective Two-Photon Absorption for Singlet Oxygen Generation. ACS Applied Materials & Interfaces, 2016, 8, 21465-21471.	8.0	78
15	Zwitterionic Covalent Organic Frameworks: Attractive Porous Host for Gas Separation and Anhydrous Proton Conduction. ACS Nano, 2021, 15, 19743-19755.	14.6	78
16	Self-Supported Fibrous Porous Aromatic Membranes for Efficient CO ₂ /N ₂ Separations. ACS Applied Materials & Interfaces, 2015, 7, 15561-15569.	8.0	75
17	Targeted synthesis of core–shell porous aromatic frameworks for selective detection of nitro aromatic explosives via fluorescence two-dimensional response. Journal of Materials Chemistry A, 2015, 3, 19346-19352.	10.3	69
18	Ratiometric fluorescent nanosensors for selective detecting cysteine with upconversion luminescence. Biosensors and Bioelectronics, 2016, 77, 124-130.	10.1	69

Heping

#	Article	IF	CITATIONS
19	Novel Porphyrinic Porous Organic Frameworks for High Performance Separation of Small Hydrocarbons. Scientific Reports, 2013, 3, 2611.	3.3	61
20	Tuning proton dissociation energy in proton carrier doped 2D covalent organic frameworks for anhydrous proton conduction at elevated temperature. Journal of Materials Chemistry A, 2020, 8, 13702-13709.	10.3	61
21	Construction and sorption properties of pyrene-based porous aromatic frameworks. Microporous and Mesoporous Materials, 2013, 173, 92-98.	4.4	60
22	Synthesis of porous aromatic framework with tuning porosity via ionothermal reaction. Dalton Transactions, 2012, 41, 3933.	3.3	43
23	Metal–Organic Frameworks Modulated by Doping Er ³⁺ for Up-Conversion Luminescence. ACS Applied Materials & Interfaces, 2016, 8, 17389-17394.	8.0	41
24	Aliphatic amine decorating metal–organic framework for durable SO2 capture from flue gas. Separation and Purification Technology, 2021, 259, 118164.	7.9	34
25	Assembling of a functional cyclodextrin-decorated upconversion luminescence nanoplatform for cysteine-sensing. Chemical Communications, 2015, 51, 14054-14056.	4.1	33
26	Two-Dimensional Metal-Polyphthalocyanine Conjugated Porous Frameworks as Promising Optical Limiting Materials. ACS Applied Materials & Interfaces, 2020, 12, 46565-46570.	8.0	33
27	Inhibition effects of Pb species on the V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NO with NH3: A DFT supported experimental study. Applied Surface Science, 2020, 525, 146582.	6.1	32
28	Adsorptive Separation of Aromatic Compounds from Alkanes by π–π Interactions in a Carbazole-Based Conjugated Microporous Polymer. ACS Applied Materials & Interfaces, 2020, 12, 56385-56392.	8.0	30
29	Synthesis and Catalytic Properties of New Metalloporphyrinâ€Based Porous Organic Framework Materials with Single and Accessible Sites. ChemCatChem, 2016, 8, 2393-2400.	3.7	26
30	In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature. ACS Applied Materials & Interfaces, 2021, 13, 13604-13612.	8.0	21
31	Trigonal prism or octahedron: the conformational change of a dendritic six-node ligand in MOFs. Journal of Materials Chemistry A, 2013, 1, 10112.	10.3	20
32	High-Efficiency Separation of Aromatic Sulfide from Liquid Hydrocarbon Fuel in Conjugated Porous Organic Framework with Polycarbazole Unit. ACS Applied Materials & Interfaces, 2019, 11, 40970-40979.	8.0	17
33	Graphene modified porous organic polymer supported phosphotungstic acid catalyst for alkylation desulfurization. Fuel, 2021, 293, 120438.	6.4	14
34	Graphdiyne-like Porous Organic Framework as a Solid-Phase Sulfur Conversion Cathodic Host for Stable Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 59983-59992.	8.0	14
35	Tuning surface inductive electric field in microporous organic polymers for Xe/Kr separation. Chemical Engineering Journal, 2021, 426, 131271.	12.7	13
36	Nonlinear optical properties of polyphthalocyanine porous organic frameworks. New Journal of Chemistry, 2020, 44, 15345-15349.	2.8	12

Heping

#	Article	IF	CITATIONS
37	Fluorine-functionalized Porous Organic Polymers for Durable F-gas Capture from Semiconductor Etching Exhaust. Macromolecules, 2022, 55, 1435-1444.	4.8	11
38	Covalent organic frameworks with immobilized anions to liberate lithium ions: Quasi-solid electrolytes with enhanced rate capabilities. Electrochimica Acta, 2021, 389, 138585.	5.2	9
39	HF Resistant Porous Aromatic Frameworks for Electronic Special Gases Separation. Langmuir, 2022, 38, 8667-8676.	3.5	9
40	Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework. Journal of Materials Research, 2012, 27, 1417-1420.	2.6	8
41	Construction and Characterization of Pyrene-alkyne Based Porous Frameworks. Acta Chimica Sinica, 2013, 71, 1598.	1.4	1