Dechun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6008734/publications.pdf

Version: 2024-02-01

361413 526287 1,195 99 20 27 citations h-index g-index papers 99 99 99 714 all docs citing authors docs citations times ranked

#	Article	IF	CITATIONS
1	Passively Q-switched Tm:YAP laser with a zeolitic imidalate framework-67 saturable absorber operating at 3H4â†'3H5 transition. Optics and Laser Technology, 2022, 147, 107679.	4.6	15
2	Surface functionalization of Ta4C3 MXene for broadband ultrafast photonics in the near-infrared region. Applied Materials Today, 2022, 26, 101341.	4.3	17
3	Third-order optical nonlinearity in Ti2C MXene for Q-switching operation at 1–2Âμm. Optical Materials, 2022, 124, 112054.	3.6	6
4	Enhanced optical nonlinearity and ultrafast carrier dynamics of TiO2/CuO nanocomposites. Composites Part B: Engineering, 2022, 237, 109860.	12.0	12
5	Large-scale few-layered MoS ₂ as a saturable absorber for Q-switching operation at 2.3â€Âμm. Optics Letters, 2022, 47, 3271.	3.3	12
6	Highly stable passively Q-switched erbium-doped fiber laser with zeolitic imidazolate framework-67 saturable absorber. Infrared Physics and Technology, 2022, 125, 104274.	2.9	10
7	Synthesis of core-shell polyhedron ZIF-8@ZIF-67 as saturable absorber for passive Q-switching operation in Tm:YAP laser at 3H4â†'3H5 transition. Optical Materials, 2022, 131, 112724.	3.6	9
8	MXene Ti3C2Tx (TÂ=ÂF, O, or OH) saturable absorber for a 2Âμm doubly Q-switched laser with AOM. Optics and Laser Technology, 2021, 134, 106642.	4.6	6
9	Phase stability of monolayer Silâ^'xGex alloys with a Dirac cone. Nanoscale, 2021, 13, 8607-8613.	5.6	3
			TC = 0 00 = T
10	Phase diagram and superlattice structures of monolayer phosphorus carbide (< mml:math) Tj ETQq0 0 0 rgBT /O	verlock 10 2.4) Tf 50 397 Td 3
10	Phase diagram and superlattice structures of monolayer phosphorus carbide (<mml:math) 0="" broadband="" enhanced="" etqq0="" nonlinear="" o="" of="" optical="" response="" rgbt="" tio<sub="" tj="">2/CuO nanosheets via oxygen vacancy engineering. Nanophotonics, 2021, 10, 1541-1551.</mml:math)>		
	Enhanced broadband nonlinear optical response of TiO ₂ /CuO nanosheets via oxygen	2.4	3
11	Enhanced broadband nonlinear optical response of TiO ₂ /CuO nanosheets via oxygen vacancy engineering. Nanophotonics, 2021, 10, 1541-1551. Nonlinear optical responses of α-Fe2O3 nanosheets and application as a saturable absorber in the wide	6.0	28
11 12	Enhanced broadband nonlinear optical response of TiO ₂ /CuO nanosheets via oxygen vacancy engineering. Nanophotonics, 2021, 10, 1541-1551. Nonlinear optical responses of î±-Fe2O3 nanosheets and application as a saturable absorber in the wide near-infrared region. Optics and Laser Technology, 2021, 136, 106812. Nonlinear optical response of ternary chalcogenide nanoflakes for the pulse generation near 2Âî¼m.	2.46.04.6	3 28 19
11 12 13	Enhanced broadband nonlinear optical response of TiO ₂ /CuO nanosheets via oxygen vacancy engineering. Nanophotonics, 2021, 10, 1541-1551. Nonlinear optical responses of α-Fe2O3 nanosheets and application as a saturable absorber in the wide near-infrared region. Optics and Laser Technology, 2021, 136, 106812. Nonlinear optical response of ternary chalcogenide nanoflakes for the pulse generation near 2Âμm. Optical Materials, 2021, 114, 111001. Sulfur-doped graphitic carbon nitride for Tm:YAlO ₃ laser operation at 2.3  µm. Optics	2.46.04.63.6	3 28 19 3
11 12 13 14	Enhanced broadband nonlinear optical response of TiO ₂ /CuO nanosheets via oxygen vacancy engineering. Nanophotonics, 2021, 10, 1541-1551. Nonlinear optical responses of α-Fe2O3 nanosheets and application as a saturable absorber in the wide near-infrared region. Optics and Laser Technology, 2021, 136, 106812. Nonlinear optical response of ternary chalcogenide nanoflakes for the pulse generation near 2Âμm. Optical Materials, 2021, 114, 111001. Sulfur-doped graphitic carbon nitride for Tm:YAIO ₃ laser operation at 2.3  µm. Optics Letters, 2021, 46, 2043. Core-shell CdSe/ZnS quantum dots polymer composite as the saturable absorber at 1.3 μm: Influence of the doping concentration. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021,	2.4 6.0 4.6 3.6	3 28 19 3 7
11 12 13 14	Enhanced broadband nonlinear optical response of TiO ₂ /CuO nanosheets via oxygen vacancy engineering. Nanophotonics, 2021, 10, 1541-1551. Nonlinear optical responses of α-Fe2O3 nanosheets and application as a saturable absorber in the wide near-infrared region. Optics and Laser Technology, 2021, 136, 106812. Nonlinear optical response of ternary chalcogenide nanoflakes for the pulse generation near 2Âμm. Optical Materials, 2021, 114, 111001. Sulfur-doped graphitic carbon nitride for Tm:YAIO ₃ laser operation at 2.3  Âμm. Optics Letters, 2021, 46, 2043. Core-shell CdSe/ZnS quantum dots polymer composite as the saturable absorber at 1.3 μm: Influence of the doping concentration. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 400, 127307. Theoretical and experimental investigations on Nb ₂ CT _x MXene Q-switched	2.4 6.0 4.6 3.6 3.1	3 28 19 3 7

#	Article	IF	CITATIONS
19	Broadband and enhanced nonlinear optical modulation characteristics of CuBTC for pulsed lasers. Optical Materials Express, 2021, 11, 3546.	3.0	9
20	Synthesis and optical nonlinearity investigation of novel Fe ₃ O ₄ @Ti ₃ C _{2(\sub> MXene hybrid nanomaterials from 1 to 2 \hat{1}/4m. Journal of Materials Chemistry C, 2021, 9, 1772-1777.}	5 . 5	13
21	Layered Metallic Vanadium Disulfide for Doubly Q-Switched Tm:YAP Laser with EOM: Experimental and Theoretical Investigations. Nanomaterials, 2021, 11, 2605.	4.1	9
22	Vacancy-Induced Magnetism in Fluorographene: The Effect of Midgap State. Molecules, 2021, 26, 6666.	3.8	1
23	Third-order nonlinear properties and reverse absorption behavior in layered Ti ₃ C ₂ MXene in the near infrared region. Optical Materials Express, 2021, 11, 4051.	3.0	6
24	Band structure tuning of g-C ₃ N ₄ via sulfur doping for broadband near-infrared ultrafast photonic applications. Nanophotonics, 2021, 11, 139-151.	6.0	11
25	Diameter-selected single-walled carbon nanotubes for the passive Q-switching operation at 2Âμm. Optical Materials, 2020, 100, 109627.	3.6	8
26	Powerful ultrafast hybrid PM Yb:fiber–Nd:GdVO4 master oscillator power amplifier. Optics Communications, 2020, 460, 125109.	2.1	3
27	The signal-to-noise ratio analysis of coronal plane microwave correlation imaging based on azimuth one-dimensional array. Journal of Electromagnetic Waves and Applications, 2020, 34, 129-139.	1.6	0
28	Graphitic Carbon Nitride Q-Switched Tm:CNNGG Laser at 2 Micrometer Wavelength Region. IEEE Photonics Technology Letters, 2020, 32, 162-165.	2.5	5
29	Self-Q-switched σ-polarized Tm,Ho:CaLu0.1Gd0.9AlO4 laser at 2.1ÂÎ⅓m. Journal of Luminescence, 2020, 227, 117560.	3.1	8
30	Optical properties enhancement of buckled Bismuthene in mid-infrared region: a theoretical first-principle study. Molecular Simulation, 2020, 46, 1004-1010.	2.0	4
31	Nonlinear Optical Features of Zeolitic Imidazolate Framework-67 Nanocrystals for Mid-Infrared Pulse Generation. Crystal Growth and Design, 2020, 20, 6683-6690.	3.0	19
32	Optical nonlinearity of zeolitic imidazolate framework-67 in the near-infrared region. Materials Chemistry Frontiers, 2020, 4, 2081-2088.	5.9	31
33	Bismuthene quantum dots based optical modulator for MIR lasers at 2Âμm. Optical Materials, 2020, 102, 109830.	3.6	22
34	Pulsed Tm:Ca(Gd,Lu)AlO4 laser doubly Q-switched by acousto-optic modulator and CVD-grown tungsten disulfide (WS2). Infrared Physics and Technology, 2020, 109, 103381.	2.9	7
35	Nonlinear optical properties of colloidal CdSe/ZnS quantum dots in PMMA. Nanotechnology, 2020, 31, 195703.	2.6	14
36	Passively Q-switched near-infrared lasers with bismuthene quantum dots as the saturable absorber. Optics and Laser Technology, 2020, 128, 106219.	4.6	23

#	Article	IF	CITATIONS
37	Passively Q-switched Er:Lu ₂ O ₃ laser at 2.8  Âμm with TiC saturable absorber. Applied Optics, 2020, 59, 8066.	1.8	5
38	Passively Q-switched Tm:CaLu _{0.1} Gd _{0.9} AlO ₄ laser at 2â€Âμm with hematite nanosheets as the saturable absorber. Optics Express, 2020, 28, 16893.	3.4	17
39	Nonlinear optical absorption features in few-layered hybrid Ti ₃ C ₂ F ₂ MXene for optical pulse generation in the NIR region. Optics Express, 2020, 28, 31499.	3.4	22
40	Dual-loss-modulated Q-switched Tm:Ca(Gd,Lu)AlO4 laser using AOM and a MoS2 nanosheet. Optical Materials Express, 2020, 10, 752.	3.0	8
41	Few-layered α-Fe ₂ O ₃ nanoflake saturable absorber for stable MIR pulse generation. Optical Materials Express, 2020, 10, 2313.	3.0	8
42	Recent investigations on nonlinear absorption properties of carbon nanotubes. Nanophotonics, 2020, 9, 761-781.	6.0	25
43	Large-scale monolayer molybdenum disulfide (MoS ₂) for mid-infrared photonics. Nanophotonics, 2020, 9, 4703-4710.	6.0	18
44	Optical modulation of magnesium 2,5-dihydroxyterephthalate saturable absorber for passively Q-switched 2 \hat{l} /4m solid-state laser. Applied Physics Express, 2020, 13, 115003.	2.4	6
45	Theoretical investigation on electronic and optical properties of the graphene-MoSe2-graphene sandwich heterostructure. Materials and Design, 2019, 183, 108129.	7.0	31
46	Comprehensive study on the nonlinear optical properties of few-layered MoSe2 nanosheets at 1â€Î⅓m. Journal of Alloys and Compounds, 2019, 806, 52-57.	5.5	28
47	Doubly passively Q-switched Tm:YAP laser with MoS2 and WS2 saturable absorbers at 2 μm. Optik, 2019, 198, 163205.	2.9	12
48	Doubly Q-switched Tm:YAP laser with g-C3N4 saturable absorber and AOM. Optical Materials, 2019, 96, 109306.	3.6	15
49	Heterostructure ReS2/GaAs Saturable Absorber Passively Q-Switched Nd:YVO4 Laser. Nanoscale Research Letters, 2019, 14, 112.	5.7	6
50	Separation of Single-Walled Carbon Nanotubes Using the Amino Acid Surfactant <i>N</i> Cocoyl Sarcosinate. ACS Applied Nano Materials, 2019, 2, 5440-5449.	5.0	7
51	8.2 <mml:math altimg="si2.svg" display="inline" id="d1e89" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">ν</mml:mi></mml:math> J 5 ps Yb:KGWâ€"Yb:YAG MOPA system at 1 MHz repetition rate. Optics Communications, 2019, 450, 176-179.	2.1	2
52	Synthesis and nonlinear optical properties of semiconducting single-walled carbon nanotubes at 1 \hat{l} 4m. Nanoscale, 2019, 11, 7287-7292.	5.6	42
53	Broadband Nonlinear Optical Response of InSe Nanosheets for the Pulse Generation From 1 to 2 \hat{l} 4m. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48281-48289.	8.0	51
54	Optical modulation characteristics of zeolitic imidazolate framework-67 (ZIF-67) in the near infrared regime. Optics Letters, 2019, 44, 5892.	3.3	28

#	Article	IF	CITATIONS
55	Optical properties of MoSe ₂ nanosheets: characterization, simulation and application for Q-switching. Optical Materials Express, 2019, 9, 3494.	3.0	12
56	Ferroferric-Oxide Nanoparticle Based Optical Modulator for \$2~mu\$ m Spectral Region. IEEE Photonics Technology Letters, 2018, 30, 777-780.	2.5	13
57	Passively Q-switched 2.85 <i>$\hat{A}\mu$</i> m Er:Lu ₂ O ₃ laser with WSe ₂ . Laser Physics Letters, 2018, 15, 085802.	1.4	10
58	High-quality 2-νm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi ₂ Te ₃ topological insulators. Photonics Research, 2018, 6, 314.	7.0	54
59	Liquid-phase exfoliated semiconducting single-walled carbon nanotubes as a saturable absorber for passively Q-switched laser. Journal of Nanophotonics, 2018, 12, 1.	1.0	4
60	1.36 W Passively Q-Switched YVO ₄ /Nd:YVO ₄ Laser With a WS ₂ Saturable Absorber. IEEE Photonics Technology Letters, 2017, 29, 470-473.	2.5	23
61	Idler-resonant intracavity KTA-based OPO pumped by a dual-loss modulated-Q-switched-laser with AOM and Cr4+:YAG. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	1
62	Multilayer black phosphorus as saturable absorber for an Er:Lu_2O_3 laser at â^¼3  μm. Photonics Research, 2016, 4, 181.	7.0	47
63	An intensive dispersion and synchronous assembly of single-walled carbon nanotubes in a surfactant–oil–water association system. Physical Chemistry Chemical Physics, 2016, 18, 10947-10953.	2.8	7
64	Modulation frequency characteristics in a doubly Q-switched Nd:Gd0.63Y0.37VO4 laser with an acousto-optic modulator and a V3+:YAG saturable absorber. Optical and Quantum Electronics, 2016, 48, 1.	3.3	3
65	Theoretical and experimental studies on coexistent OPO and SRS from a KTiOPO4 pumped by an AO Q-switched Nd:LGGG laser. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	2
66	High-peak-power subnanosecond doubly Q-switched YVO4/Nd:YVO4 laser. Optical and Quantum Electronics, 2016, 48, 1.	3.3	2
67	Comparison of passively Q-switched laser performance of two composite Nd:YVO $\$ 4}\$\$ 4 /Nd:YVO \$\$_{4}\$\$ 4 crystals with Cr \$\$^{4+}\$\$ 4 + :YAG saturable absorber. Optical and Quantum Electronics, 2015, 47, 1219-1225.	3.3	1
68	Generation of low repetition rate sub-nanosecond pulses in doubly QML Nd:Lu0.5Y0.5VO4 and Nd:YVO4 lasers with EO and transmission SSA. Optics and Laser Technology, 2015, 69, 39-43.	4.6	3
69	Dual-Wavelength Passively Q-Switched Nd,Mg:LiTaO3 Laser With a Monolayer Graphene as Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 343-347.	2.9	28
70	Passively Q-switched Nd:GGG laser with a SWCNT as saturable absorber. Optical and Quantum Electronics, 2015, 47, 697-703.	3.3	6
71	Experimental and Theoretical Investigation on Subnanosecond Pulse Characteristics From Doubly QML Nd:Lu _{0.5} Y _{VO₄ Green Laser. IEEE Journal of Quantum Electronics, 2015, 51, 1-8. Low Repetition Rate Subnanosecond Pulse Characteristics of}	1.9	1
72	Nd:Lu <inline-formula><tex-math>\$_{f 0.5}\$ </tex-math><inline-formula>Xelt;inline-formula>Xelt;inline-formula><tex-math>\$_{f 0.5}\$</tex-math></inline-formula>VO<inline-formula> <tex-math>\$_{f 4}\$</tex-math></inline-formula>/KTP Green Laser With EO and MWCNT. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 79-84.</inline-formula>	2.9	3

#	Article	IF	Citations
73	Simultaneous Stokes and Anti-Stokes Lines Operation Within a Yb:YAG Laser at 1050 nm. IEEE Photonics Technology Letters, 2014, 26, 2369-2371.	2.5	4
74	Simultaneous intracavity optical parametric oscillation and stimulated Raman scattering pumped by a doubly passively Q-switched Nd:GGG laser. Applied Physics B: Lasers and Optics, 2014, 117, 869-873.	2.2	0
75	The electronic and optical properties of quaternary GaAs1-x-yN \times Bi y alloy lattice-matched to GaAs: a first-principles study. Nanoscale Research Letters, 2014, 9, 580.	5.7	22
76	Dual-loss modulated Nd:GGG laser with Cr4+:YAG and GaAs. Optics and Laser Technology, 2014, 64, 324-327.	4.6	2
77	Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050nm. Optics and Laser Technology, 2014, 56, 398-403.	4.6	16
78	Passively Q-switched laser performance of the mixed crystals Nd:Lu0.15 Y0.85 VO4, Nd:Lu0.5 Y0.5 VO4 and Nd:Lu0.33Y0.37Gd0.3VO4 with GaAs saturable absorber. Optical and Quantum Electronics, 2013, 45, 233-243.	3.3	1
79	First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber. Optics Express, 2012, 20, 6258.	3.4	25
80	First principles study of Bismuth alloying effects in GaAs saturable absorber. Optics Express, 2012, 20, 11574.	3.4	20
81	Defect Engineering in CdS _{<i>x</i>} Se _{1â€"<i>x</i>} Nanobelts: An Insight into Carrier Relaxation Dynamics via Optical Pumpâ€"Terahertz Probe Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 26036-26042.	3.1	23
82	First principle study of the elastic properties of InGaAs with different doping concentrations of indium. Molecular Simulation, 2012, 38, 84-89.	2.0	2
83	LASER-DIODE END-PUMPED DOUBLY PASSIVELY Q-SWITCHED INTRACAVITY-FREQUENCY-DOUBLING Nd : YVO ₄ / KTP GREEN LASER WITH Cr csup>4+: YAG AND GaAs SATURABLE ABSORBERS. International Journal of Modern Physics B, 2011, 25, 293-300.	2.0	0
84	Optimization of GaAs semiconductor saturable absorber Q-switched lasers. Optik, 2010, 121, 478-485.	2.9	8
85	Optimization of the Efficiency of GaAs Saturable Absorber Q-switched Lasers. , 2010, , .		0
86	First-principle study of the native defects in GaAs saturable absorbers. Molecular Simulation, 2010, 36, 1141-1147.	2.0	2
87	Laser-diode-pumped doubly Q-switched Nd:GdVO4/KTA intracavity optical parametric oscillator. Laser Physics, 2009, 19, 927-932.	1.2	12
88	Diode-Pumped Passively Mode-Locked Nd : LuVO\$_{4}\$ Laser With a Semiconductor Saturable Absorbe Mirror. IEEE Photonics Technology Letters, 2009, 21, 836-838.	r 2.5	1
89	Actively \$Q\$-switched and Mode-Locked Diode-Pumped \${hbox {Nd:GdVO}}_{4}{hbox {-KTP}}\$ Laser. IEEE Journal of Quantum Electronics, 2008, 44, 288-293.	1.9	15
90	Analysis of output characteristics of the actively Q-switched intracavity optical parametric oscillator considering Gaussian distribution of intracavity photon densities. Journal of Modern Optics, 2008, 55, 1267-1277.	1.3	4

DECHUN LI

#	Article	lF	CITATIONS
91	Self-mode locking in a diode-pumped self-Q-switched green laser. Journal of Applied Physics, 2007, 101, 013105.	2.5	6
92	Optimization of doubly Q-switched lasers with both an acousto-optic modulator and a GaAs saturable absorber. Applied Optics, 2007, 46, 6127.	2.1	7
93	Doubly Passively Self- Q -Switched ${\hox {Cr}}^{4+}{hox {:Nd}}^{3+}{hox {:YAG}}$ Laser With a GaAs Output Coupler in a Short Cavity. IEEE Journal of Quantum Electronics, 2007, 43, 109-115.	1.9	9
94	Laser-diode-pumped passively Q-switched Nd:YVO4green laser with periodically poled KTP and GaAs saturable absorber. Journal of Modern Optics, 2007, 54, 107-117.	1.3	1
95	Optimization of peak power of doubly Q-switched lasers with both an acousto-optic modulator and a Cr^4+-doped saturable absorber. Applied Optics, 2006, 45, 5767.	2.1	9
96	Optimization of Passively Q-switched Lasers by Taking into Account Intracavity Laser Spatial Distribution. Optical and Quantum Electronics, 2005, 37, 927-942.	3.3	8
97	Pulse shape symmetry and pulse width reduction in diode-pumped doubly Q-switched Nd:YVO4/KTP green laser with AO and GaAs. Optics Express, 2005, 13, 1178.	3.4	41
98	Passive Q-switching of a laser-diode-pumped intracavity-frequency-doubling Nd:Nd3+:NaY(WO4)2/KTP laser with Cr4+:YAG saturable absorber. Optical and Quantum Electronics, 2004, 36, 1227-1236.	3.3	8
99	Broadband optical nonlinearity of zeolitic imidazolate framework-8 (ZIF-8) for ultrafast photonics. Journal of Materials Chemistry C, 0, , .	5.5	25