
Shannon M Conley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6008612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Old blood from heterochronic parabionts accelerates vascular aging in young mice: transcriptomic signature of pathologic smooth muscle remodeling. GeroScience, 2022, 44, 953-981.	2.1	15
2	<i>Prph2</i> disease mutations lead to structural and functional defects in the RPE. FASEB Journal, 2022, 36, e22284.	0.2	3
3	Increased Susceptibility to Cerebral Microhemorrhages Is Associated With Imaging Signs of Microvascular Degeneration in the Retina in an Insulin-Like Growth Factor 1 Deficient Mouse Model of Accelerated Aging. Frontiers in Aging Neuroscience, 2022, 14, 788296.	1.7	11
4	Gene Therapy to the Retina and the Cochlea. Frontiers in Neuroscience, 2021, 15, 652215.	1.4	13
5	Imaging retinal microvascular manifestations of carotid artery disease in older adults: from diagnosis of ocular complications to understanding microvascular contributions to cognitive impairment. GeroScience, 2021, 43, 1703-1723.	2.1	18
6	Co-Injection of Sulfotyrosine Facilitates Retinal Uptake of Hyaluronic Acid Nanospheres Following Intravitreal Injection. Pharmaceutics, 2021, 13, 1510.	2.0	2
7	Adherent but Not Suspension-Cultured Embryoid Bodies Develop into Laminated Retinal Organoids. Journal of Developmental Biology, 2021, 9, 38.	0.9	2
8	ROM1 contributes to phenotypic heterogeneity in PRPH2-associated retinal disease. Human Molecular Genetics, 2020, 29, 2708-2722.	1.4	7
9	Retinal biomarkers for Alzheimer's disease and vascular cognitive impairment and dementia (VCID): implication for early diagnosis and prognosis. GeroScience, 2020, 42, 1499-1525.	2.1	64
10	Syntaxin 3 is essential for photoreceptor outer segment protein trafficking and survival. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20615-20624.	3.3	23
11	Retbindin: A riboflavin Binding Protein, Is Critical for Photoreceptor Homeostasis and Survival in Models of Retinal Degeneration. International Journal of Molecular Sciences, 2020, 21, 8083.	1.8	4
12	Novel molecular mechanisms for Prph2â€associated pattern dystrophy. FASEB Journal, 2020, 34, 1211-1230.	0.2	19
13	Prph2 initiates outer segment morphogenesis but maturation requires Prph2/Rom1 oligomerization. Human Molecular Genetics, 2019, 28, 459-475.	1.4	26
14	IGF-1 Deficiency Promotes Pathological Remodeling of Cerebral Arteries: A Potential Mechanism Contributing to the Pathogenesis of Intracerebral Hemorrhages in Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 446-454.	1.7	37
15	Age-related impairment of neurovascular coupling responses: a dynamic vessel analysis (DVA)-based approach to measure decreased flicker light stimulus-induced retinal arteriolar dilation in healthy older adults. GeroScience, 2019, 41, 341-349.	2.1	53
16	Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions. GeroScience, 2019, 41, 813-845.	2.1	49
17	The Role of theÂPrph2 C-Terminus in Outer Segment Morphogenesis. Advances in Experimental Medicine and Biology, 2019, 1185, 495-499.	0.8	3
18	Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. Journal of Lipid Research, 2018, 59, 1586-1596.	2.0	56

SHANNON M CONLEY

#	Article	IF	CITATIONS
19	DNA nanoparticles are safe and nontoxic in non-human primate eyes. International Journal of Nanomedicine, 2018, Volume 13, 1361-1379.	3.3	26
20	Oligomerization of Prph2 and Rom1 is essential for photoreceptor outer segment formation. Human Molecular Genetics, 2018, 27, 3507-3518.	1.4	44
21	IGFâ€l deficiency promotes pathological remodeling of cerebral arteries: a potential mechanism contributing to the pathogenesis of intracerebral hemorrhages in aging. FASEB Journal, 2018, 32, 711.8.	0.2	2
22	Rom1 converts Y141C-Prph2-associated pattern dystrophy to retinitis pigmentosa. Human Molecular Genetics, 2017, 26, ddw408.	1.4	26
23	Role of RDS and Rhodopsin inCngb1-Related Retinal Degeneration. , 2016, 57, 787.		10
24	The K153Del PRPH2 mutation differentially impacts photoreceptor structure and function. Human Molecular Genetics, 2016, 25, 3500-3514.	1.4	22
25	PRPH2/RDS and ROM-1: Historical context, current views and future considerations. Progress in Retinal and Eye Research, 2016, 52, 47-63.	7.3	92
26	Therapeutic Approach of Nanotechnology for Oxidative Stress Induced Ocular Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2016, 854, 463-469.	0.8	17
27	RDS Functional Domains and Dysfunction in Disease. Advances in Experimental Medicine and Biology, 2016, 854, 217-222.	0.8	4
28	Characterization of Ribozymes Targeting a Congenital Night Blindness Mutation in Rhodopsin Mutation. Advances in Experimental Medicine and Biology, 2016, 854, 509-515.	0.8	1
29	Retinal Degeneration Slow (RDS) Glycosylation Plays a Role in Cone Function and in the Regulation of RDS·ROM-1 Protein Complex Formation. Journal of Biological Chemistry, 2015, 290, 27901-27913.	1.6	21
30	SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting. PLoS ONE, 2015, 10, e0138508.	1.1	29
31	Genomic DNA nanoparticles rescue rhodopsinâ€associated retinitis pigmentosa phenotype. FASEB Journal, 2015, 29, 2535-2544.	0.2	44
32	Non-viral therapeutic approaches to ocular diseases: An overview and future directions. Journal of Controlled Release, 2015, 219, 471-487.	4.8	40
33	Initiation of Rod Outer Segment Disc Formation Requires RDS. PLoS ONE, 2014, 9, e98939.	1.1	32
34	Gene Therapy for PRPH2-Associated Ocular Disease: Challenges and Prospects. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a017376-a017376.	2.9	37
35	Insights into the mechanisms of macular degeneration associated with the R172W mutation in RDS. Human Molecular Genetics, 2014, 23, 3102-3114.	1.4	42
36	The Y141C knockin mutation in RDS leads to complex phenotypes in the mouse. Human Molecular Genetics, 2014, 23, 6260-6274.	1.4	40

SHANNON M CONLEY

#	Article	IF	CITATIONS
37	Rim formation is not a prerequisite for distribution of cone photoreceptor outer segment proteins. FASEB Journal, 2014, 28, 3468-3479.	0.2	16
38	Yttrium oxide nanoparticles prevent photoreceptor death in a light-damage model of retinal degeneration. Free Radical Biology and Medicine, 2014, 75, 140-148.	1.3	47
39	A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials, 2013, 34, 7158-7167.	5.7	57
40	Persistence of non-viral vector mediated RPE65 expression: Case for viability as a gene transfer therapy for RPE-based diseases. Journal of Controlled Release, 2013, 172, 745-752.	4.8	39
41	S/MAR-containing DNA nanoparticles promote persistent RPE gene expression and improvement in RPE65-associated LCA. Human Molecular Genetics, 2013, 22, 1632-1642.	1.4	66
42	Increased cone sensitivity to ABCA4 deficiency provides insight into macular vision loss in Stargardt's dystrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1169-1179.	1.8	35
43	Structural and functional relationships between photoreceptor tetraspanins and other superfamily members. Cellular and Molecular Life Sciences, 2012, 69, 1035-1047.	2.4	26
44	Mislocalization of Oligomerization-Incompetent RDS is Associated with Mislocalization of Cone Opsins and Cone Transducin. Advances in Experimental Medicine and Biology, 2012, 723, 657-662.	0.8	3
45	DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. Journal of Clinical Investigation, 2012, 122, 3221-3226.	3.9	130
46	Comparative Analysis of DNA Nanoparticles and AAVs for Ocular Gene Delivery. PLoS ONE, 2012, 7, e52189.	1.1	67
47	Nanoparticles for retinal gene therapy. Progress in Retinal and Eye Research, 2010, 29, 376-397.	7.3	92
48	Gene delivery to mitotic and postmitotic photoreceptors <i>Via</i> compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB Journal, 2010, 24, 1178-1191.	0.2	108
49	Biochemical Analysis of Phenotypic Diversity Associated with Mutations in Codon 244 of the Retinal Degeneration Slow Gene. Biochemistry, 2010, 49, 905-911.	1.2	25
50	RDS in Cones Does Not Interact with the Beta Subunit of the Cyclic Nucleotide Gated Channel. Advances in Experimental Medicine and Biology, 2010, 664, 63-70.	0.8	10
51	A Partial Structural and Functional Rescue of a Retinitis Pigmentosa Model with Compacted DNA Nanoparticles. PLoS ONE, 2009, 4, e5290.	1.1	93
52	Differential requirements for retinal degeneration slow intermolecular disulfide-linked oligomerization in rods versus cones. Human Molecular Genetics, 2009, 18, 797-808.	1.4	59
53	Focus on molecules: RDS. Experimental Eye Research, 2009, 89, 278-279.	1.2	8
54	Ocular Delivery of Compacted DNA-Nanoparticles Does Not Elicit Toxicity in the Mouse Retina. PLoS ONE, 2009, 4, e7410.	1.1	66

#	Article	IF	CITATIONS
55	Nonviral ocular gene therapy: assessment and future directions. Current Opinion in Molecular Therapeutics, 2008, 10, 456-63.	2.8	28
56	Late-Onset Cone Photoreceptor Degeneration Induced by R172W Mutation in Rds and Partial Rescue by Gene Supplementation. , 2007, 48, 5397.		23