
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6007516/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stress Corrosion Susceptibility and Electrochemical Characteristic of X80 Under a Disbonded<br>Coating in a Low-pH Soil Solution with Cathodic Protection. Journal of Materials Engineering and<br>Performance, 2022, 31, 2102-2111. | 2.5  | 2         |
| 2  | Caustic corrosion cracking of the octene tube in the fertilizer industry. Engineering Failure Analysis, 2022, 133, 105953.                                                                                                           | 4.0  | 3         |
| 3  | Stress corrosion cracking behavior of high-strength mooring-chain steel in the SO2-polluted coastal atmosphere. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1186-1196.                                    | 4.9  | 2         |
| 4  | Effect of cathodic potential on stress corrosion cracking behavior of 21Cr2NiMo steel in simulated seawater. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 263-270.                                         | 4.9  | 1         |
| 5  | Extracellular electron transfer routes in microbiologically influenced corrosion of X80 steel by<br>Bacillus licheniformis. Bioelectrochemistry, 2022, 145, 108074.                                                                  | 4.6  | 7         |
| 6  | Corrosion and tribocorrosion behaviors of ternary TiZrN coating on 304 stainless steel prepared by<br>HiPIMS. Materials Today Communications, 2022, 31, 103258.                                                                      | 1.9  | 1         |
| 7  | Effect of Hydrogen Charging on the Stress Corrosion Cracking Behavior of X70 Steel in Simulated<br>Deep Seawater Environment. Metals, 2022, 12, 334.                                                                                 | 2.3  | 9         |
| 8  | Initiation Mechanism of Localized Corrosion Induced by Al2O3-MnS Composite Inclusion in Low-Alloy<br>Structural Steel. Metals, 2022, 12, 587.                                                                                        | 2.3  | 7         |
| 9  | Electrochemical studies of microbiologically influenced corrosion of X80 steel by nitrate-reducing<br>Bacillus licheniformis under anaerobic conditions. Journal of Materials Science and Technology,<br>2022, 118, 208-217.         | 10.7 | 15        |
| 10 | Nitrate-reducing-bacteriaÂassisted hydrogen embrittlement of X80 steel in a near-neutral pH solution.<br>Corrosion Science, 2022, 202, 110317.                                                                                       | 6.6  | 4         |
| 11 | Corrosion behavior of typical hot rolled sheets in humid storage environments. Anti-Corrosion<br>Methods and Materials, 2022, ahead-of-print, .                                                                                      | 1.5  | 0         |
| 12 | Study of biofilm-influenced corrosion on X80 pipeline steel by a nitrate-reducing bacterium, Bacillus cereus, in artificial Beijing soil. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111356.                                 | 5.0  | 27        |
| 13 | Accelerating effect of catalase on microbiologically influenced corrosion of 304 stainless steel by the halophilic archaeon Natronorubrum tibetense. Corrosion Science, 2021, 178, 109057.                                           | 6.6  | 26        |
| 14 | Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. Journal of Materials Science and Technology, 2021, 80, 217-233.                                                                            | 10.7 | 250       |
| 15 | Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater. Corrosion Science, 2021, 179, 109176.                                                                  | 6.6  | 33        |
| 16 | Effect of Tempering Temperature on the Microstructure and Stress Corrosion Cracing Susceptibility of Ultra-High-Strength Mooring Steel. Journal of Materials Engineering and Performance, 2021, 30, 4217-4229.                       | 2.5  | 2         |
| 17 | Comparison of microbiologically influenced corrosion of structural steel by nitrate-reducing bacteria in aerobic and anaerobic conditions. Construction and Building Materials, 2021, 288, 123091.                                   | 7.2  | 4         |
| 18 | Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere. Corrosion Science, 2021, 186, 109427.                                                             | 6.6  | 91        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Analysis of Corrosion Evolution in Carbon Steel in the Subtropical Atmospheric Environment of Sichuan. Journal of Materials Engineering and Performance, 2021, 30, 8014-8022.                                      | 2.5  | 15        |
| 20 | Distinct beneficial effect of Sn on the corrosion resistance of Cr–Mo low alloy steel. Journal of<br>Materials Science and Technology, 2021, 81, 175-189.                                                          | 10.7 | 39        |
| 21 | Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense. Bioelectrochemistry, 2021, 140, 107746.                                  | 4.6  | 14        |
| 22 | The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions.<br>Applied Surface Science, 2021, 560, 149854.                                                                | 6.1  | 58        |
| 23 | The influence of temperature and dissolved oxygen on the electrochemical nature of Al–Zn–In–Ga<br>galvanic anode. Surface Topography: Metrology and Properties, 2021, 9, 035054.                                   | 1.6  | 1         |
| 24 | Microstructure and mechanical properties of FeCoCrNiMo0.1 high-entropy alloy with various annealing treatments. Materials Characterization, 2021, 179, 111313.                                                     | 4.4  | 13        |
| 25 | Stress corrosion mechanism and susceptibility of X80 steel under a disbonded coating in an acidic soil solution. Journal of Materials Research and Technology, 2021, 14, 533-547.                                  | 5.8  | 7         |
| 26 | Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding. Corrosion Science, 2021, 191, 109727.                         | 6.6  | 77        |
| 27 | Optimization of Mo on the corrosion resistance of Cr-advanced weathering steel designed for tropical marine atmosphere. Construction and Building Materials, 2021, 302, 124346.                                    | 7.2  | 30        |
| 28 | Corrosion mechanism of nitrate reducing bacteria on X80 steel correlated to its intermediate metabolite nitrite. Construction and Building Materials, 2021, 303, 124454.                                           | 7.2  | 12        |
| 29 | Fundamental understanding on the microstructure and corrosion resistance of Cr-(Cr, Al)2O3 composite coatings in-situ synthetized by reactive plasma spraying. Surface and Coatings Technology, 2021, 423, 127608. | 4.8  | 5         |
| 30 | Microstructure and corrosion resistance of duplex coatings deposited on TC17 alloys by MAO and HiPIMS. Materials Letters, 2021, 303, 130506.                                                                       | 2.6  | 5         |
| 31 | Exploration of the processing scheme of a novel Ni(Fe, Al)-maraging steel. Journal of Materials<br>Research and Technology, 2021, 10, 225-239.                                                                     | 5.8  | 7         |
| 32 | X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid. Applied Surface Science, 2020, 499, 143903.                        | 6.1  | 89        |
| 33 | Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution. Corrosion Science, 2020, 163, 108287.                                 | 6.6  | 123       |
| 34 | Microbiologically influenced corrosion of 304 stainless steel by halophilic archaea Natronorubrum<br>tibetense. Journal of Materials Science and Technology, 2020, 46, 12-20.                                      | 10.7 | 20        |
| 35 | 1Influence of graphene oxide additive on the tribological and electrochemical corrosion properties of a PEO coating prepared on AZ31 magnesium alloy. Tribology International, 2020, 146, 106135.                  | 5.9  | 71        |
| 36 | Microbiologically influenced corrosion of FeCoCrNiMo0.1 high-entropy alloys by marine<br>Pseudomonas aeruginosa. Corrosion Science, 2020, 165, 108390.                                                             | 6.6  | 67        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The AC corrosion and SCC mechanism of X80 pipeline steel in near-neutral pH solution. Engineering<br>Failure Analysis, 2020, 118, 104904.                                                                                                        | 4.0  | 15        |
| 38 | The influence of half-cycle rectified sinusoidal alternating current (AC) on corrosion of X80 pipeline steel in an acid bicarbonate solution. Anti-Corrosion Methods and Materials, 2020, 67, 248-254.                                           | 1.5  | 2         |
| 39 | Characteristics of hydrogen embrittlement in high-pH stress corrosion cracking of X100 pipeline steel in carbonate/ bicarbonate solution. Construction and Building Materials, 2020, 263, 120124.                                                | 7.2  | 38        |
| 40 | Stress Corrosion Cracking of 2205 Duplex Stainless Steel with Simulated Welding Microstructures in<br>Simulated Sea Environment at Different Depths. Journal of Materials Engineering and Performance,<br>2020, 29, 5476-5489.                   | 2.5  | 11        |
| 41 | Revealing bioinorganic interface in microbiologically influenced corrosion with FIB-SEM/TEM.<br>Corrosion Science, 2020, 173, 108763.                                                                                                            | 6.6  | 15        |
| 42 | Evidencing the uptake of electrons from X80 steel by Bacillus licheniformis with redox probe,<br>5-cyano-2,3-ditolyl tetrazolium chloride. Corrosion Science, 2020, 168, 108569.                                                                 | 6.6  | 20        |
| 43 | The study of microbiologically influenced corrosion of 2205 duplex stainless steel based on high-resolution characterization. Corrosion Science, 2020, 174, 108842.                                                                              | 6.6  | 35        |
| 44 | Failure analysis of a 304 stainless steel heat exchanger in liquid sulfur recovery units. Engineering<br>Failure Analysis, 2020, 116, 104729.                                                                                                    | 4.0  | 24        |
| 45 | Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments. Construction and Building Materials, 2020, 239, 117903.                                    | 7.2  | 46        |
| 46 | Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys. Journal of Materials Science and Technology, 2020, 46, 64-73.                                                                      | 10.7 | 138       |
| 47 | Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution. Bioelectrochemistry, 2020, 133, 107477.                                                                    | 4.6  | 25        |
| 48 | Comparative study on corrosion fatigue behaviour of high strength low alloy steel and simulated<br>HAZ microstructures in a simulated marine atmosphere. International Journal of Fatigue, 2020, 137,<br>105666.                                 | 5.7  | 30        |
| 49 | Local chemistry–electrochemistry and stress corrosion susceptibility of X80 steel below disbonded coating in acidic soil environment under cathodic protection. Construction and Building Materials, 2020, 243, 118203.                          | 7.2  | 33        |
| 50 | Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial<br>Beijing soil. Bioelectrochemistry, 2020, 135, 107551.                                                                                 | 4.6  | 22        |
| 51 | Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria. Corrosion Science, 2020, 173, 108746.                                                                       | 6.6  | 74        |
| 52 | Effect of AC Current Density on the Stress Corrosion Cracking Behavior and Mechanism of E690<br>High-Strength Steel in Simulated Seawater. Journal of Materials Engineering and Performance, 2019,<br>28, 6931-6941.                             | 2.5  | 11        |
| 53 | Effect of alternating current and Bacillus cereus on the stress corrosion behavior and mechanism of X80 steel in a Beijing soil solution. Bioelectrochemistry, 2019, 127, 49-58.                                                                 | 4.6  | 22        |
| 54 | Electrochemical characteristic and stress corrosion behavior of API X70 high-strength pipeline steel<br>under a simulated disbonded coating in an artificial seawater environment. Journal of<br>Electroanalytical Chemistry, 2019, 845, 92-105. | 3.8  | 29        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Interaction between hydrogen and cyclic stress and its role in fatigue damage mechanism. Corrosion<br>Science, 2019, 157, 146-156.                                                                                                                                                                                                                              | 6.6 | 34        |
| 56 | Effect of pre-strain on the electrochemical and stress corrosion cracking behavior of E690 steel in simulated marine atmosphere. Ocean Engineering, 2019, 182, 188-195.                                                                                                                                                                                         | 4.3 | 26        |
| 57 | Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 124-141.                                                            | 5.6 | 77        |
| 58 | Effect of Dissolved Oxygen Concentration on the Microbiologically Influenced Corrosion of Q235<br>Carbon Steel by Halophilic Archaeon Natronorubrum tibetense. Frontiers in Microbiology, 2019, 10,<br>844.                                                                                                                                                     | 3.5 | 22        |
| 59 | Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on Mg Li alloy. Surface and Coatings Technology, 2019, 364, 144-156.                                                                                                                                                                                         | 4.8 | 44        |
| 60 | Fractal characteristics of AC corrosion morphology of X80 pipeline steel in coastal soil solution.<br>Anti-Corrosion Methods and Materials, 2019, 66, 868-878.                                                                                                                                                                                                  | 1.5 | 1         |
| 61 | Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil. Bioelectrochemistry, 2019, 126, 121-129.                                                                                                                                                                                                               | 4.6 | 22        |
| 62 | Mussel-inspired superhydrophilic surface with enhanced antimicrobial properties under immersed and atmospheric conditions. Applied Surface Science, 2019, 465, 267-278.                                                                                                                                                                                         | 6.1 | 42        |
| 63 | Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment.<br>Bioelectrochemistry, 2018, 121, 18-26.                                                                                                                                                                                                                              | 4.6 | 53        |
| 64 | Effects of cathodic polarization on corrosion fatigue life of E690 steel in simulated seawater.<br>International Journal of Fatigue, 2018, 110, 105-114.                                                                                                                                                                                                        | 5.7 | 52        |
| 65 | Electrochemical characterization and stress corrosion cracking of E690 high strength steel in<br>wet-dry cyclic marine environments. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2018, 710, 318-328.                                                                                                 | 5.6 | 106       |
| 66 | The Effect of Flowing Velocity and Impact Angle on the Fluid-Accelerated Corrosion of X65 Pipeline<br>Steel in a Wet Gas Environment Containing CO2. Journal of Materials Engineering and Performance,<br>2018, 27, 6636-6647.                                                                                                                                  | 2.5 | 8         |
| 67 | Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense. Corrosion Science, 2018, 145, 151-161.                                                                                                                                                                                   | 6.6 | 67        |
| 68 | Effect of microstructure on the corrosion resistance of 2205 duplex stainless steel. Part 2:<br>Electrochemical noise analysis of corrosion behaviors of different microstructures based on<br>wavelet transform. Construction and Building Materials, 2018, 189, 1294-1302.                                                                                    | 7.2 | 25        |
| 69 | Effect of microstructure on the corrosion resistance of 2205 duplex stainless steel. Part 1:<br>Microstructure evolution during isothermal aging at 850â€Â°C and evaluation of anticorrosion<br>properties by methods of cyclic potentiodynamic polarization and electrochemical impedance tests.<br>Construction and Building Materials. 2018, 189, 1286-1293. | 7.2 | 25        |
| 70 | Modeling for corrosion fatigue crack initiation life based on corrosion kinetics and equivalent initial flaw size theory. Corrosion Science, 2018, 142, 277-283.                                                                                                                                                                                                | 6.6 | 29        |
| 71 | Effect of SO2 content on SCC behavior of E690 high-strength steel in SO2-polluted marine atmosphere. Ocean Engineering, 2018, 164, 256-262.                                                                                                                                                                                                                     | 4.3 | 32        |
| 72 | Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in<br>Presence of Different Alternating Current Densities. Materials, 2018, 11, 1074.                                                                                                                                                                                | 2.9 | 13        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The Corrosion Behavior of AZ91D Magnesium Alloy in Simulated Haze Aqueous Solution. Materials, 2018, 11, 970.                                                                                                                           | 2.9  | 20        |
| 74 | Variation of the Corrosion Behavior Prior to Crack Initiation of E690 Steel Fatigued in Simulated<br>Seawater with Various Cyclic Stress Levels. Journal of Materials Engineering and Performance, 2018,<br>27, 4921-4931.              | 2.5  | 10        |
| 75 | Effect of alternating current on stress corrosion cracking behavior and mechanism of X80 pipeline steel in near-neutral solution. Journal of Natural Gas Science and Engineering, 2017, 38, 458-465.                                    | 4.4  | 35        |
| 76 | Field experiment of stress corrosion cracking behavior of high strength pipeline steels in typical soil environments. Construction and Building Materials, 2017, 148, 131-139.                                                          | 7.2  | 46        |
| 77 | Effect of Hydrogen Charging on the Stress Corrosion Behavior of 2205 Duplex Stainless Steel Under<br>3.5Âwt.% NaCl Thin Electrolyte Layer. Journal of Materials Engineering and Performance, 2017, 26,<br>2837-2846.                    | 2.5  | 11        |
| 78 | Influence of sea mud state on the anodic behavior of Al-Zn-In-Mg-Ti sacrificial anode. Ocean<br>Engineering, 2017, 136, 11-17.                                                                                                          | 4.3  | 10        |
| 79 | Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. Journal of Materials Chemistry A, 2017, 5, 2355-2364.                                                                            | 10.3 | 413       |
| 80 | Corrosion fatigue crack initiation and initial propagation mechanism of E690 steel in simulated<br>seawater. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2017, 708, 181-192. | 5.6  | 94        |
| 81 | Effect of pH and hydrogen on the stress corrosion cracking behavior of duplex stainless steel in marine atmosphere environment. Ocean Engineering, 2017, 146, 311-323.                                                                  | 4.3  | 38        |
| 82 | Stress corrosion cracking behavior of ZK60 magnesium alloy under different conditions.<br>International Journal of Hydrogen Energy, 2017, 42, 26162-26174.                                                                              | 7.1  | 50        |
| 83 | The cost of corrosion in China. Npj Materials Degradation, 2017, 1, .                                                                                                                                                                   | 5.8  | 652       |
| 84 | A new understanding of the failure of waterborne acrylic coatings. RSC Advances, 2017, 7, 38135-38148.                                                                                                                                  | 3.6  | 12        |
| 85 | Effect of negative half-wave alternating current on stress corrosion cracking behavior and<br>mechanism of X80 pipeline steel in near-neutral solution. Construction and Building Materials, 2017,<br>154, 580-589.                     | 7.2  | 31        |
| 86 | Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties. Materials Science and Engineering C, 2017, 80, 566-577.                                                          | 7.3  | 66        |
| 87 | Failure Mechanisms of the Coating/Metal Interface in Waterborne Coatings: The Effect of Bonding.<br>Materials, 2017, 10, 397.                                                                                                           | 2.9  | 28        |
| 88 | Effect of Zinc Phosphate on the Corrosion Behavior of Waterborne Acrylic Coating/Metal Interface.<br>Materials, 2017, 10, 654.                                                                                                          | 2.9  | 28        |
| 89 | Corrosion Behavior of X80 Steel with Coupled Coating Defects under Alternating Current<br>Interference in Alkaline Environment. Materials, 2017, 10, 720.                                                                               | 2.9  | 11        |
| 90 | Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel.<br>Materials, 2017, 10, 851.                                                                                                             | 2.9  | 27        |

| #   | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property. Materials, 2017, 10, 628.                                                                                                                                                         | 2.9  | 19        |
| 92  | A Modelling Study for Predicting Life of Downhole Tubes Considering Service Environmental<br>Parameters and Stress. Materials, 2016, 9, 741.                                                                                                                           | 2.9  | 3         |
| 93  | Erosion–corrosion behavior of 2205 duplex stainless steel in wet gas environments. Journal of<br>Natural Gas Science and Engineering, 2016, 35, 928-934.                                                                                                               | 4.4  | 19        |
| 94  | Effect of plastic deformation on the electrochemical and stress corrosion cracking behavior of X70<br>steel in near-neutral pH environment. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2016, 677, 259-273. | 5.6  | 116       |
| 95  | Electrochemical Behavior and Stress Corrosion Sensitivity of X70 Steel Under Disbonded Coatings in<br>Korla Soil Solution. Journal of Materials Engineering and Performance, 2016, 25, 4657-4665.                                                                      | 2.5  | 10        |
| 96  | Comparative study of the SCC behavior of E690 steel and simulated HAZ microstructures in a<br>SO2-polluted marine atmosphere. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2016, 650, 93-101.                | 5.6  | 50        |
| 97  | Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in<br>simulated soil environments. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2016, 658, 348-354.             | 5.6  | 93        |
| 98  | The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea<br>environment. Ocean Engineering, 2016, 114, 216-223.                                                                                                             | 4.3  | 52        |
| 99  | Failure analysis of P110 steel tubing in low-temperature annular environment of CO2 flooding wells.<br>Engineering Failure Analysis, 2016, 60, 296-306.                                                                                                                | 4.0  | 25        |
| 100 | Materials science: Share corrosion data. Nature, 2015, 527, 441-442.                                                                                                                                                                                                   | 27.8 | 557       |
| 101 | Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015,<br>642, 22-31.                                                     | 5.6  | 105       |
| 102 | Field corrosion characterization of soil corrosion of X70 pipeline steel in a red clay soil. Progress in Natural Science: Materials International, 2015, 25, 242-250.                                                                                                  | 4.4  | 34        |
| 103 | Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide. Corrosion Science, 2015, 100, 627-641.                                                                                                          | 6.6  | 123       |
| 104 | Stress Corrosion Cracking of X80 Pipeline Steel Under Various Alternating Current Frequencies in High-pH Carbonate/Bicarbonate Solution. Corrosion, 2014, 70, 1181-1188.                                                                                               | 1.1  | 13        |
| 105 | In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel.<br>Corrosion Science, 2014, 85, 401-410.                                                                                                                            | 6.6  | 99        |
| 106 | Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80<br>Pipeline Steel in High pH Carbonate/Bicarbonate Solution. Journal of Materials Engineering and<br>Performance, 2014, 23, 1358-1365.                                | 2.5  | 23        |
| 107 | Effect of AC current density on stress corrosion cracking behavior of X80 pipeline steel in high pH carbonate/bicarbonate solution. Electrochimica Acta, 2014, 117, 351-359.                                                                                           | 5.2  | 89        |
| 108 | Mechanistic Aspect of Non-Steady Electrochemical Characteristic During Stress Corrosion Cracking of an X70 Pipeline Steel in Simulated Underground Water. Corrosion, 2014, 70, 678-685.                                                                                | 1.1  | 43        |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Effect of alternating voltage on corrosion of X80 and X100 steels in a chloride containing solution –<br>Investigated by AC voltammetry technique. Corrosion Science, 2014, 86, 213-222. | 6.6 | 43        |
| 110 | Effect of AC on stress corrosion cracking behavior and mechanism of X80 pipeline steel in carbonate/bicarbonate solution. Corrosion Science, 2014, 87, 224-232.                          | 6.6 | 71        |
| 111 | Effect of pH value on stress corrosion cracking of X70 pipeline steel in acidic soil environment. Acta<br>Metallurgica Sinica (English Letters), 2013, 26, 489-496.                      | 2.9 | 26        |
| 112 | Characterization of corrosion products formed on the surface of carbon steel by Raman spectroscopy. Journal of Raman Spectroscopy, 2009, 40, 76-79.                                      | 2.5 | 53        |
| 113 | Raman and IR spectroscopy study of corrosion products on the surface of the hotâ€dip galvanized steel with alkaline mud adhesion. Journal of Raman Spectroscopy, 2009, 40, 656-660.      | 2.5 | 12        |
| 114 | Effects of cathodic potential on the local electrochemical environment under a disbonded coating.<br>Journal of Applied Electrochemistry, 2009, 39, 697-704.                             | 2.9 | 17        |
| 115 | Effects of Microstructure on Corrosion of X70 Pipe Steel in an Alkaline Soil. Journal of Materials<br>Engineering and Performance, 2009, 18, 216-220.                                    | 2.5 | 77        |
| 116 | Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in a CO2-Containing Solution. Journal of Materials Engineering and Performance, 2009, 18, 319-323.                | 2.5 | 33        |
| 117 | Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution. Materials & Design, 2009, 30, 1712-1717.                                                            | 5.1 | 102       |
| 118 | Effect of applied potentials on stress corrosion cracking of X70 pipeline steel in alkali solution.<br>Materials & Design, 2009, 30, 2259-2263.                                          | 5.1 | 34        |
| 119 | Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment. Corrosion Science, 2009, 51, 895-900.                                 | 6.6 | 143       |
| 120 | Effect of cathodic protection on corrosion of pipeline steel under disbonded coating. Corrosion Science, 2009, 51, 2242-2245.                                                            | 6.6 | 131       |
| 121 | Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution. Corrosion Science, 2009, 51, 2863-2871.                                  | 6.6 | 121       |
| 122 | Relationship between electrochemical characteristics and SCC of X70 pipeline steel in an acidic soil simulated solution. Acta Metallurgica Sinica (English Letters), 2009, 22, 58-64.    | 2.9 | 31        |
| 123 | Corrosion resistance of 316L stainless steel in acetic acid by EIS and Mott-Schottky. Journal Wuhan<br>University of Technology, Materials Science Edition, 2008, 23, 574-578.           | 1.0 | 8         |
| 124 | Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment. Corrosion Science, 2008, 50, 2251-2257.                                                              | 6.6 | 178       |
| 125 | Effect of Alternating Current and Cathodic Protection on Corrosion of X80 Steel in Alkaline Soil.<br>Journal of Materials Engineering and Performance, 0, , 1.                           | 2.5 | 3         |