Bumjin Gil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6007472/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Interfacial Modification and Defect Passivation by the Cross-Linking Interlayer for Efficient and Stable CuSCN-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 46818-46824.	8.0	82
2	Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Electronic Materials Letters, 2019, 15, 505-524.	2.2	62
3	From Nanostructural Evolution to Dynamic Interplay ofÂConstituents: Perspectives for Perovskite Solar Cells. Advanced Materials, 2018, 30, e1704208.	21.0	54
4	A Cu ₂ O–CuSCN Nanocomposite as a Hole-Transport Material of Perovskite Solar Cells for Enhanced Carrier Transport and Suppressed Interfacial Degradation. ACS Applied Energy Materials, 2020, 3, 7572-7579.	5.1	52
5	Triamineâ€Based Aromatic Cation as a Novel Stabilizer for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905190.	14.9	48
6	Aminosilaneâ€Modified CuGaO ₂ Nanoparticles Incorporated with CuSCN as a Holeâ€Transport Layer for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1901372.	3.7	43
7	Insights on the delithiation/lithiation reactions of Li Mn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano Energy, 2017, 39, 371-379.	16.0	41
8	Complementary surface modification by disordered carbon and reduced graphene oxide on SnO2 hollow spheres as an anode for Li-ion battery. Carbon, 2018, 129, 342-348.	10.3	41
9	CuCrO2 Nanoparticles Incorporated into PTAA as a Hole Transport Layer for 85 °C and Light Stabilities in Perovskite Solar Cells. Nanomaterials, 2020, 10, 1669.	4.1	33
10	Incorporation of Lithium Fluoride Restraining Thermal Degradation and Photodegradation of Organometal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 50418-50425.	8.0	27
11	Synergetic effect of double-step blocking layer for the perovskite solar cell. Journal of Applied Physics, 2017, 122, .	2.5	17
12	Selective rear contact for Ga0.5In0.5P- and GaAs- based solar cells. Solar Energy Materials and Solar Cells, 2018, 182, 348-353.	6.2	17
13	Selective removal of nanopores by triphenylphosphine treatment on the natural graphite anode. Electrochimica Acta, 2019, 326, 134993.	5.2	15
14	Metal oordination Mediated Polyacrylate for High Performance Silicon Microparticle Anode. Batteries and Supercaps, 2020, 3, 1287-1295.	4.7	15
15	Route to Improving Photovoltaics Based on CdSe/CdSe _{<i>x</i>} Te _{1–<i>x</i>} Type-II Heterojunction Nanorods: The Effect of Morphology and Cosensitization on Carrier Recombination and Transport. ACS Applied Materials & Interfaces, 2017, 9, 31931-31939.	8.0	14
16	Evolution of the Electronic Traps in Perovskite Photovoltaics during 1000 h at 85 °C. ACS Applied Energy Materials, 2022, 5, 7192-7198.	5.1	13
17	Highly effective III-V solar cells by controlling the surface roughnesses. Current Applied Physics, 2020, 20, 899-903.	2.4	6
18	Organometal Halide Perovskites: From Nanostructural Evolution to Dynamic Interplay ofAConstituents: Perspectives for Perovskite Solar Cells (Adv. Mater. 42/2018). Advanced Materials, 2018, 30, 1870313.	21.0	0