List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6007291/publications.pdf Version: 2024-02-01



YAOZONG GAO

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge. Medical Image Analysis, 2021, 67, 101821.           | 11.6 | 226       |
| 2  | LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images.<br>NeuroImage, 2015, 108, 160-172.                                               | 4.2  | 208       |
| 3  | Fully convolutional networks for multi-modality isointense infant brain image segmentation. , 2016, 2016, 1342-1345.                                                               |      | 175       |
| 4  | Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks. Lecture Notes in Computer Science, 2016, 2016, 170-178.                                                   | 1.3  | 151       |
| 5  | Longitudinal clinical score prediction in Alzheimer's disease with soft-split sparse regression based random forest. Neurobiology of Aging, 2016, 46, 180-191.                     | 3.1  | 99        |
| 6  | Integration of sparse multi-modality representation and anatomical constraint for isointense infant<br>brain MR image segmentation. NeuroImage, 2014, 89, 152-164.                 | 4.2  | 96        |
| 7  | Representation Learning: A Unified Deep Learning Framework for Automatic Prostate MR<br>Segmentation. Lecture Notes in Computer Science, 2013, 16, 254-261.                        | 1.3  | 91        |
| 8  | Unsupervised Deep Feature Learning for Deformable Registration of MR Brain Images. Lecture Notes in<br>Computer Science, 2013, 16, 649-656.                                        | 1.3  | 85        |
| 9  | CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation. Medical Image Analysis, 2019, 54, 168-178.                            | 11.6 | 72        |
| 10 | Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and<br>Multi-Task Random Forests. IEEE Transactions on Medical Imaging, 2016, 35, 1532-1543. | 8.9  | 71        |
| 11 | Sparse Patch-Based Label Propagation for Accurate Prostate Localization in CT Images. IEEE<br>Transactions on Medical Imaging, 2013, 32, 419-434.                                  | 8.9  | 67        |
| 12 | Automated bone segmentation from dental CBCT images using patchâ€based sparse representation and convex optimization. Medical Physics, 2014, 41, 043503.                           | 3.0  | 64        |
| 13 | Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis.<br>Medical Image Analysis, 2017, 41, 18-31.                                    | 11.6 | 60        |
| 14 | Automated segmentation of dental CBCT image with prior-guided sequential random forests. Medical Physics, 2015, 43, 336-346.                                                       | 3.0  | 58        |
| 15 | Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT Images for Radiotherapy<br>Planning. IEEE Transactions on Image Processing, 2018, 27, 923-937.               | 9.8  | 55        |
| 16 | Prediction of standardâ€dose brain PET image by using MRI and lowâ€dose brain [ <sup>18</sup> F]FDG PET<br>images. Medical Physics, 2015, 42, 5301-5309.                           | 3.0  | 49        |
| 17 | Prostate segmentation by sparse representation based classification. Medical Physics, 2012, 39, 6372-6387.                                                                         | 3.0  | 46        |
| 18 | Segmentation of perivascular spaces in 7 T MR image using auto-context model with orientation-normalized features. NeuroImage, 2016, 134, 223-235.                                 | 4.2  | 38        |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | 7Tâ€guided superâ€resolution of 3T MRI. Medical Physics, 2017, 44, 1661-1677.                                                                                                                     | 3.0  | 38        |
| 20 | Quantitative computed tomography of the coronavirus disease 2019 (COVID-19) pneumonia. Radiology of Infectious Diseases, 2020, 7, 55-61.                                                          | 0.0  | 37        |
| 21 | Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images. Medical Image Analysis, 2015, 26, 345-356.                                             | 11.6 | 34        |
| 22 | Automatic labeling of MR brain images by hierarchical learning of atlas forests. Medical Physics, 2016,<br>43, 1175-1186.                                                                         | 3.0  | 26        |
| 23 | Interactive prostate segmentation using atlasâ€guided semiâ€supervised learning and adaptive feature selection. Medical Physics, 2014, 41, 111715.                                                | 3.0  | 22        |
| 24 | Concatenated spatially-localized random forests for hippocampus labeling in adult and infant MR brain images. Neurocomputing, 2017, 229, 3-12.                                                    | 5.9  | 22        |
| 25 | Collaborative regression-based anatomical landmark detection. Physics in Medicine and Biology, 2015, 60, 9377-9401.                                                                               | 3.0  | 21        |
| 26 | Robust anatomical landmark detection with application to MR brain image registration. Computerized<br>Medical Imaging and Graphics, 2015, 46, 277-290.                                            | 5.8  | 21        |
| 27 | Estimating patientâ€specific and anatomically correct reference model for craniomaxillofacial deformity via sparse representation. Medical Physics, 2015, 42, 5809-5816.                          | 3.0  | 19        |
| 28 | Learning-Based Multimodal Image Registration for Prostate Cancer Radiation Therapy. Lecture Notes in<br>Computer Science, 2016, 9902, 1-9.                                                        | 1.3  | 19        |
| 29 | Learningâ€based subjectâ€specific estimation of dynamic maps of cortical morphology at missing time<br>points in longitudinal infant studies. Human Brain Mapping, 2016, 37, 4129-4147.           | 3.6  | 17        |
| 30 | A learning-based CT prostate segmentation method via joint transductive feature selection and regression. Neurocomputing, 2016, 173, 317-331.                                                     | 5.9  | 17        |
| 31 | Automated Segmentation of CBCT Image Using Spiral CT Atlases and Convex Optimization. Lecture Notes in Computer Science, 2013, 16, 251-258.                                                       | 1.3  | 17        |
| 32 | Development and validation of a deep-learning model for detecting brain metastases on 3D<br>post-contrast MRI: a multi-center multi-reader evaluation study. Neuro-Oncology, 2022, 24, 1559-1570. | 1.2  | 17        |
| 33 | Incremental Learning With Selective Memory (ILSM): Towards Fast Prostate Localization for Image<br>Guided Radiotherapy. IEEE Transactions on Medical Imaging, 2014, 33, 518-534.                  | 8.9  | 16        |
| 34 | In vivo MRI based prostate cancer localization with random forests and auto-context model.<br>Computerized Medical Imaging and Graphics, 2016, 52, 44-57.                                         | 5.8  | 16        |
| 35 | Learningâ€based deformable registration for infant <scp>MRI</scp> by integrating random forest with<br>autoâ€context model. Medical Physics, 2017, 44, 6289-6303.                                 | 3.0  | 16        |
| 36 | Learning Distance Transform for Boundary Detection and Deformable Segmentation in CT Prostate<br>Images. Lecture Notes in Computer Science, 2014, 8679, 93-100.                                   | 1.3  | 16        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning. Medical Physics, 2014, 41, 072303.                                           | 3.0 | 15        |
| 38 | Can we predict subjectâ€specific dynamic cortical thickness maps during infancy from birth?. Human<br>Brain Mapping, 2017, 38, 2865-2874.                                                      | 3.6 | 14        |
| 39 | A cascade and heterogeneous neural network for CT pulmonary nodule detection and its evaluation on both phantom and patient data. Computerized Medical Imaging and Graphics, 2021, 90, 101889. | 5.8 | 11        |
| 40 | Prostate Segmentation by Sparse Representation Based Classification. Lecture Notes in Computer Science, 2012, 15, 451-458.                                                                     | 1.3 | 9         |
| 41 | Nonlocal atlasâ€guided multiâ€channel forest learning for human brain labeling. Medical Physics, 2016,<br>43, 1003-1019.                                                                       | 3.0 | 8         |
| 42 | Segmentation of Perivascular Spaces Using Vascular Features and Structured Random Forest from 7T<br>MR Image. Lecture Notes in Computer Science, 2016, 10019, 61-68.                           | 1.3 | 8         |
| 43 | Automatic parcellation of cortical surfaces using random forests. , 2015, 2015, 810-813.                                                                                                       |     | 6         |
| 44 | MR prostate segmentation via distributed discriminative dictionary (DDD) learning. , 2013, 2013, 868-871.                                                                                      |     | 4         |
| 45 | Incremental Learning with Selective Memory (ILSM): Towards Fast Prostate Localization for Image<br>Guided Radiotherapy. Lecture Notes in Computer Science, 2013, 16, 378-386.                  | 1.3 | 4         |
| 46 | 7T-Guided Learning Framework for Improving the Segmentation of 3T MR Images. Lecture Notes in<br>Computer Science, 2016, 9901, 572-580.                                                        | 1.3 | 3         |
| 47 | Landmark-Based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images. Lecture Notes<br>in Computer Science, 2017, 10081, 35-45.                                                | 1.3 | 3         |
| 48 | Multi-source Information Gain for Random Forest: An Application to CT Image Prediction from MRI<br>Data. Lecture Notes in Computer Science, 2015, 9352, 321-329.                               | 1.3 | 3         |
| 49 | Online updating of contextâ€∎ware landmark detectors for prostate localization in daily treatment CT<br>images. Medical Physics, 2015, 42, 2594-2606.                                          | 3.0 | 2         |
| 50 | Automatic Hippocampal Subfield Segmentation from 3T Multi-modality Images. Lecture Notes in<br>Computer Science, 2016, 10019, 229-236.                                                         | 1.3 | 2         |
| 51 | Multi-atlas Based Segmentation Editing with Interaction-Guided Constraints. Lecture Notes in<br>Computer Science, 2015, 9351, 198-206.                                                         | 1.3 | 1         |
| 52 | Subject-Specific Estimation of Missing Cortical Thickness Maps in Developing Infant Brains. Lecture<br>Notes in Computer Science, 2016, 9601, 83-92.                                           | 1.3 | 1         |
| 53 | A dynamic tree-based registration could handle possible large deformations among MR brain images.<br>Computerized Medical Imaging and Graphics, 2016, 52, 1-7.                                 | 5.8 | 1         |
| 54 | LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR<br>Images. Lecture Notes in Computer Science, 2017, 2017, 26-34.                          | 1.3 | 1         |

| #  | Article                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Soft-Split Random Forest for Anatomy Labeling. Lecture Notes in Computer Science, 2015, 9352, 17-25.                                               | 1.3 | 1         |
| 56 | lsointense Infant Brain Segmentation by Stacked Kernel Canonical Correlation Analysis. Lecture Notes<br>in Computer Science, 2015, 9467, 28-36.    | 1.3 | 1         |
| 57 | Non-local Atlas-guided Multi-channel Forest Learning for Human Brain Labeling. Lecture Notes in<br>Computer Science, 2015, 9351, 719-726.          | 1.3 | 0         |
| 58 | Hierarchical Multi-modal Image Registration by Learning Common Feature Representations. Lecture<br>Notes in Computer Science, 2015, 9352, 203-211. | 1.3 | 0         |
| 59 | Regression Guided Deformable Models for Segmentation of Multiple Brain ROIs. Lecture Notes in Computer Science, 2016, 10019, 237-245.              | 1.3 | 0         |
| 60 | Automatic Cystocele Severity Grading in Ultrasound by Spatio-Temporal Regression. Lecture Notes in<br>Computer Science, 2016, 9901, 247-255.       | 1.3 | 0         |