
James McPhee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6007073/publications.pdf Version: 2024-02-01

IAMES MCDHEE

#	Article	IF	CITATIONS
1	The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrology and Earth System Sciences, 2017, 21, 6307-6327.	4.9	368
2	The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset. Hydrology and Earth System Sciences, 2018, 22, 5817-5846.	4.9	188
3	Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change, 2011, 105, 469-488.	3.6	177
4	A diversified multiobjective GA for optimizing reservoir rule curves. Advances in Water Resources, 2007, 30, 1082-1093.	3.8	163
5	Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile. Journal of Hydrology, 2009, 374, 162-170.	5.4	158
6	Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. Forest Ecology and Management, 2009, 258, 415-424.	3.2	147
7	Changes of glaciers in the Andes of Chile and priorities for future work. Science of the Total Environment, 2014, 493, 1197-1210.	8.0	94
8	Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences, 2013, 17, 1035-1050.	4.9	92
9	Agriculture Vulnerability to Climate Change in a Snowmelt-Driven Basin in Semiarid Chile. Journal of Water Resources Planning and Management - ASCE, 2012, 138, 431-441.	2.6	79
10	Multiobjective Optimization for Sustainable Groundwater Management in Semiarid Regions. Journal of Water Resources Planning and Management - ASCE, 2004, 130, 490-497.	2.6	75
11	Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera. Journal of Hydrology, 2011, 405, 93-109.	5.4	64
12	Patterns of spatial and temporal variability in streamflow records in south central Chile in the period 1952–2003. Water Resources Research, 2010, 46, .	4.2	62
13	An evaluation of approaches for modelling hydrological processes in highâ€elevation, glacierized Andean watersheds. Hydrological Processes, 2014, 28, 5674-5695.	2.6	62
14	Physically Based Mountain Hydrological Modeling Using Reanalysis Data in Patagonia. Journal of Hydrometeorology, 2015, 16, 172-193.	1.9	55
15	Reconstructing the annual mass balance of the Echaurren Norte glacier (Central Andes, 33.5° S) using local and regional hydroclimatic data. Cryosphere, 2016, 10, 927-940.	3.9	49
16	Groundwater Management Using Model Reduction via Empirical Orthogonal Functions. Journal of Water Resources Planning and Management - ASCE, 2008, 134, 161-170.	2.6	48
17	Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover. Hydrology and Earth System Sciences, 2016, 20, 411-430.	4.9	47
18	Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile. Cryosphere, 2020, 14, 2005-2027.	3.9	44

JAMES MCPHEE

#	Article	IF	CITATIONS
19	The Andes Cordillera. Part I: snow distribution, properties, and trends (1979–2014). International Journal of Climatology, 2017, 37, 1680-1698.	3.5	42
20	Modelling the hydrological response of debrisâ€free and debrisâ€covered glaciers to present climatic conditions in the semiarid Andes of central Chile. Hydrological Processes, 2016, 30, 4036-4058.	2.6	40
21	Validation and Error Characterization of the GPCP-1DD Precipitation Product over the Contiguous United States. Journal of Hydrometeorology, 2005, 6, 441-459.	1.9	34
22	Spatiotemporal Variations in Hydroclimate across the Mediterranean Andes (30°–37°S) since the Early Twentieth Century. Journal of Hydrometeorology, 2017, 18, 1929-1942.	1.9	34
23	Interannual variability in glacier contribution to runoff from a highâ€elevation Andean catchment: understanding the role of debris cover in glacier hydrology. Hydrological Processes, 2019, 33, 214-229.	2.6	34
24	Patterns of glacier ablation across <scp>N</scp> orthâ€ <scp>C</scp> entral <scp>C</scp> hile: Identifying the limits of empirical melt models under sublimationâ€favorable conditions. Water Resources Research, 2017, 53, 5601-5625.	4.2	32
25	Snow Depth Patterns in a High Mountain Andean Catchment from Satellite Optical Tristereoscopic Remote Sensing. Water Resources Research, 2020, 56, e2019WR024880.	4.2	32
26	Estimating runoff from a glacierized catchment using natural tracers in the semiâ€arid Andes cordillera. Hydrological Processes, 2016, 30, 3609-3626.	2.6	30
27	Uncertainty in flood forecasting: A distributed modeling approach in a sparse data catchment. Water Resources Research, 2012, 48, .	4.2	29
28	Catastrophic, rainfall-induced debris flows in Andean villages of TarapacÃ;, Atacama Desert, northern Chile. Landslides, 2014, 11, 481-491.	5.4	29
29	A robust multimodel framework for ensemble seasonal hydroclimatic forecasts. Water Resources Research, 2014, 50, 6030-6052.	4.2	26
30	Glacier albedo reduction and drought effects in the extratropical Andes, 1986–2020. Journal of Glaciology, 2021, 67, 158-169.	2.2	25
31	Experimental design for groundwater modeling and management. Water Resources Research, 2006, 42,	4.2	24
32	A near 90-year record of the evolution of El Morado Glacier and its proglacial lake, Central Chilean Andes. Journal of Glaciology, 2020, 66, 846-860.	2.2	18
33	Snowfall interception in a deciduous <scp>Nothofagus</scp> forest and implications for spatial snowpack distribution. Hydrological Processes, 2019, 33, 1818-1834.	2.6	15
34	Interannual and Seasonal Variability of Snow Depth Scaling Behavior in a Subalpine Catchment. Water Resources Research, 2020, 56, e2020WR027343.	4.2	15
35	Altitudinal gradients, midwinter melt, and wind effects on snow accumulation in semiarid midlatitude Andes under La Niña conditions. Water Resources Research, 2014, 50, 3589-3594.	4.2	14
36	Using a Statistical Preanalysis Approach as an Ensemble Technique for the Unbiased Mapping of GCM Changes to Local Stations. Journal of Hydrometeorology, 2018, 19, 1447-1465.	1.9	13

#	Article	IF	CITATIONS
37	The Andes Cordillera. Part IV: spatioâ€temporal freshwater runâ€off distribution to adjacent seas (1979–2014). International Journal of Climatology, 2017, 37, 3175-3196.	3.5	12
38	The Utility of Optical Satellite Winter Snow Depths for Initializing a Glacioâ€Hydrological Model of a Highâ€Elevation, Andean Catchment. Water Resources Research, 2020, 56, e2020WR027188.	4.2	12
39	Atmospheric Rivers Contribution to the Snow Accumulation Over the Southern Andes (26.5° S–37.5°) Tj ET	Qq1 1 0.7	84314 rgBT
40	Downscaling Climate Changes for Santiago: What Effects can be Expected?. , 2014, , 19-41.		10
41	The Andes Cordillera. Part <scp>II</scp> : Rio Olivares Basin snow conditions (1979–2014), central Chile. International Journal of Climatology, 2017, 37, 1699-1715.	3.5	9
42	Monitoring Spatial and Temporal Differences in Andean Snow Depth Derived From Satellite Tri-Stereo Photogrammetry. Frontiers in Earth Science, 2020, 8, .	1.8	9
43	Hydrogeochemical and environmental water quality standards in the overlap between high mountainous natural protected areas and copper mining activities (Mapocho river upper basin,) Tj ETQq1 1 0.78	43 1.4 rgBT	·/@verlock 10
44	An Approach to Estimating Hydropower Impacts of Climate Change from a Regional Perspective. , 2010, ,		7
45	Spatial Distribution and Scaling Properties of Lidarâ€Đerived Snow Depth in the Extratropical Andes. Water Resources Research, 2020, 56, e2020WR028480.	4.2	7
46	Snow Processes and Climate Sensitivity in an Arid Mountain Region, Northern Chile. Atmosphere, 2021, 12, 520.	2.3	7
47	Sensitivity of forest–snow interactions to climate forcing: Local variability in a Pyrenean valley. Journal of Hydrology, 2022, 605, 127311.	5.4	7
48	Climate Change Economic Impacts on Supply of Water for the M & I Sector in the Metropolitan Region of Chile. , 2010, , .		6
49	The role of local geochemical and mineralogical backgrounds as essential information to build efficient sediment quality guidelines at high-mountainous hydrothermally-altered basins (Mapocho) Tj ETQq1 1 C).7 8:4 814 r	gBJT /Overloc
50	An integrated modeling approach for mineral and metal transport in acidic rivers at high mountainous porphyry Cu systems. Journal of Hydrology, 2021, 602, 126718.	5.4	4
51	The influence of urban expansion on the flood hazard in Santiago de Chile. , 2009, , .		3
52	Risks and Opportunities for Sustainable Management of Water Resources and Services in Santiago de Chile. , 2012, , 251-278.		3
53	Optimal Experimental Design for Parameter Estimation and Contaminant Plume Characterization in Groundwater Modelling. , 2005, , 219-245.		2
54	Best Practices in Addressing NPDES and Other Water Quality Issues in Highway System Management. , 2010, , .		2

JAMES MCPHEE

#	Article	IF	CITATIONS
55	Snow Cover and Glaciers. World Water Resources, 2021, , 129-151.	0.4	2
56	Vulnerability and Adaptation to Climate Change in an Irrigated Agricultural Basin in Semi Arid Chile. , 2010, , .		1
57	Retrofitting with Bioretention and a Bioswale to Treat Bridge Deck Stormwater Runoff. , 2010, , .		1
58	Decision Support System for Sustainable Groundwater Management. , 2003, , 142.		0
59	Optimal Groundwater Management Using Empirical Orthogonal Functions. , 2006, , 1.		Ο
60	Applying Principles of Denver Strategic Transportation Plan: East Side Corridor. , 2010, , .		0