List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6007000/publications.pdf Version: 2024-02-01

	126708	149479
4,005	33	56
citations	h-index	g-index
1.40	1.40	6000
143	143	6293
docs citations	times ranked	citing authors
	citations 143	4,00533citationsh-index143143

RO SONC

#	Article	IF	CITATIONS
1	Annealing- and doping-free hole transport material for p-i-n perovskite solar cells with efficiency achieving over 21%. Chemical Engineering Journal, 2022, 433, 133265.	6.6	11
2	3,5-Difluorophenylboronic acid-modified SnO2 as ETLs for perovskite solar cells: PCEÂ>Â22.3%, T82Â>Â3000Âh. Chemical Engineering Journal, 2022, 433, 133744.	6.6	22
3	Strong emission of excimers realized by dense packing of pyrenes in tailored bola-amphiphile nano assemblies. Cell Reports Physical Science, 2022, 3, 100734.	2.8	2
4	Visible light-regulated BiVO4-based micromotor with biomimetic â€~predator-bait' behavior. Journal of Materials Science, 2022, 57, 4092-4103.	1.7	8
5	Supramolecular fluorescence nanoprobe loaded with azobenzene for the detection of azoreductase: Selective light-up of hypoxic cells. Sensors and Actuators B: Chemical, 2022, 363, 131860.	4.0	7
6	Reducing trap densities of perovskite films by the addition of hypoxanthine for high-performance and stable perovskite solar cells. Chemical Engineering Journal, 2022, 436, 135269.	6.6	17
7	Turn-on fluorescence probe for BSA detection and selective cell imaging. Dyes and Pigments, 2022, 202, 110267.	2.0	22
8	Impact of Alkyl Chain Length on the Properties of Fluorenyl-Based Linear Hole-Transport Materials in <i>p-i-n</i> Perovskites Solar Cells. ACS Applied Energy Materials, 2022, 5, 7988-7996.	2.5	6
9	Conjugated copolymers as doping- and annealing-free hole transport materials for highly stable and efficient p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2269-2275.	5.2	15
10	Visible Light-Driven Micromotor with Incident-Angle-Controlled Motion and Dynamic Collective Behavior. Langmuir, 2021, 37, 180-187.	1.6	13
11	Photoswitching of the melting point of a semicrystalline polymer by the azobenzene terminal group for a reversible solid-to-liquid transition. Journal of Materials Chemistry A, 2021, 9, 9364-9370.	5.2	8
12	Zwitterions: promising interfacial/doping materials for organic/perovskite solar cells. New Journal of Chemistry, 2021, 45, 15118-15130.	1.4	15
13	Phosphatidylcholine-mediated regulation of growth kinetics for colloidal synthesis of cesium tin halide nanocrystals. Nanoscale, 2021, 13, 16726-16733.	2.8	7
14	Fluorinating Dopant-Free Small-Molecule Hole-Transport Material to Enhance the Photovoltaic Property. ACS Applied Materials & Interfaces, 2021, 13, 7705-7713.	4.0	25
15	Cellular uptake of a cationic amphiphilic fluorophore in the form of assemblies via Clathrin-dependent endocytosis. Materials and Design, 2021, 200, 109464.	3.3	5
16	Theory-Guided Synthesis of Highly Luminescent Colloidal Cesium Tin Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2021, 143, 5470-5480.	6.6	49
17	Dimethyl Sulfoxide-Free and Water-Soluble Fluorescent Probe for Detection of Bovine Serum Albumin Prepared by Ionic Co-assembly of Amphiphiles. Langmuir, 2021, 37, 4532-4539.	1.6	6
18	Nano-fluorophores prepared by polymerization-induced self-assembly and its application in cell imaging. Dyes and Pigments, 2021, 190, 109353.	2.0	4

#	Article	IF	CITATIONS
19	Highly sensitive and selective "turn-off―fluorescent probes based on coumarin for detection of Cu2+. Colloids and Interface Science Communications, 2021, 43, 100451.	2.0	15
20	Highly stable inverted non-fullerene OSCs by surface modification of SnO2 with an easy-accessible material. Chemical Engineering Journal, 2021, 426, 131583.	6.6	8
21	Dibenzo[<i>b</i> , <i>d</i>]thiopheneâ€Cored Holeâ€Transport Material with Passivation Effect Enabling the Highâ€Efficiency Planar p–i–n Perovskite Solar Cells with 83% Fill Factor. Solar Rrl, 2020, 4, 1900421.	3.1	47
22	Poly[2,7-(9,9-dihexylfluorene)]-block-poly[2-(dimethylamino)ethylmethacrylate] as resilient cathode interlayers in polymer solar cells: the effect of block ratios. Journal of Power Sources, 2020, 449, 227474.	4.0	5
23	High-efficiency planar p-i-n perovskite solar cells based on dopant-free dibenzo[b,d]furan-centred linear hole transporting material. Journal of Power Sources, 2020, 449, 227488.	4.0	18
24	Water-soluble near-infrared fluorescent probes enhanced by ionic co-assembly of a four-armed amphiphile with SDBS: Toward application in cell imaging. Dyes and Pigments, 2020, 181, 108541.	2.0	4
25	Low-Cost, Robust Pressure-Responsive Smart Windows with Dynamic Switchable Transmittance. ACS Applied Materials & Interfaces, 2020, 12, 15695-15702.	4.0	19
26	A high-efficiency ammonia-responsive solar evaporator. Nanoscale, 2020, 12, 9680-9687.	2.8	10
27	Emission shift of an amphiphilic α-cyanostilbene derivative through concentration-driven two-step assembly with cucurbit[7]uril. Dyes and Pigments, 2020, 180, 108460.	2.0	5
28	Cellular Metabolism of Fluorescent Nanoprobes Formed by Self-Assembly of Amphiphiles: Dynamic Trafficking from the Golgi Apparatus to the Lysosome. ACS Applied Bio Materials, 2019, 2, 5790-5798.	2.3	3
29	Scale Effect of a Fluorescent Waveguide in Organic Micromaterials: A Case Study Based on Coumarin Microfibers. Journal of Physical Chemistry Letters, 2019, 10, 5997-6002.	2.1	13
30	A fuel-free polymer-based micropump with optically tunable pumping directions. Journal of Materials Chemistry C, 2019, 7, 2299-2304.	2.7	5
31	A Lightâ€Driven Micromotor with Complex Motion Behaviors for Controlled Release. Advanced Materials Interfaces, 2019, 6, 1801965.	1.9	17
32	Improve the crystallinity and morphology of perovskite films by suppressing the formation of intermediate phase of CH3NH3PbCl3. Organic Electronics, 2019, 68, 96-102.	1.4	9
33	Water-soluble and highly emissive near-infrared nano-probes by co-assembly of ionic amphiphiles: towards application in cell imaging. New Journal of Chemistry, 2019, 43, 8059-8066.	1.4	3
34	Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles. Chinese Journal of Polymer Science (English Edition), 2019, 37, 767-773.	2.0	5
35	Zwitterionic Polymer: A Facile Interfacial Material Works at Both Anode and Cathode in <i>pâ€iâ€n</i> Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900118.	3.1	24
36	High Efficiency Planar pâ€iâ€n Perovskite Solar Cells Using Lowâ€Cost Fluoreneâ€Based Hole Transporting Material. Advanced Functional Materials, 2019, 29, 1900484.	7.8	59

#	Article	IF	CITATIONS
37	21.7% efficiency achieved in planar n–i–p perovskite solar cells <i>via</i> interface engineering with water-soluble 2D TiS ₂ . Journal of Materials Chemistry A, 2019, 7, 6213-6219.	5.2	87
38	One-step synthesis of PCL/Mg Janus micromotor for precious metal ion sensing, removal and recycling. Journal of Materials Science, 2019, 54, 7322-7332.	1.7	26
39	A facile method to incorporate tetraphenylethylene into polymeric amphiphiles: High emissive nanoparticles for cell-imaging. Dyes and Pigments, 2019, 160, 711-716.	2.0	4
40	Phenanthrenone-based hole transport material for efficient dopant-free perovskite solar cells. Organic Electronics, 2019, 65, 135-140.	1.4	18
41	Effect of Fullerene Volume Fraction on Twoâ€Dimensional Crystalâ€Constructed Supramolecular Liquid Crystals. Chemistry - an Asian Journal, 2019, 14, 125-129.	1.7	10
42	3,4-Dihydroxybenzhydrazide as an additive to improve the morphology of perovskite films for efficient and stable perovskite solar cells. Organic Electronics, 2019, 66, 47-52.	1.4	9
43	A Nonconjugated Zwitterionic Polymer: Cathode Interfacial Layer Comparable with PFN for Narrowâ€Bandgap Polymer Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1700828.	2.0	14
44	Room-Temperature and Aqueous Solution-Processed Two-Dimensional TiS ₂ as an Electron Transport Layer for Highly Efficient and Stable Planar n–i–p Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14796-14802.	4.0	49
45	Tuning the emission of a water-soluble 3-hydroxyflavone derivative by host–guest complexation. Soft Matter, 2018, 14, 4231-4237.	1.2	4
46	Enhanced p-i-n type perovskite solar cells by doping AuAg@AuAg core-shell alloy nanocrystals into PEDOT:PSS layer. Organic Electronics, 2018, 52, 309-316.	1.4	22
47	A phototactic liquid micromotor. Journal of Materials Chemistry C, 2018, 6, 12234-12239.	2.7	25
48	Semi-transparent perovskite solar cells: unveiling the trade-off between transparency and efficiency. Journal of Materials Chemistry A, 2018, 6, 19696-19702.	5.2	95
49	Separately enhanced dual emissions of the amphiphilic derivative of 2-(2â€2-hydroxylphenyl) benzothiazole by supramolecular complexation. Soft Matter, 2018, 14, 4374-4379.	1.2	4
50	A Novel Linking Strategy of Using 9,10â€Dihydroacridine to Construct Efficient Host Materials for Red Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2018, 24, 11755-11762.	1.7	8
51	A series of spirofluorene-based host materials for efficient phosphorescent organic light-emitting diodes. Organic Electronics, 2018, 61, 70-77.	1.4	13
52	Efficient OLEDs with saturated yellow and red emission based on rigid tetradentate Pt(II) complexes. Organic Electronics, 2018, 62, 542-547.	1.4	16
53	Application of amphiphilic fluorophore-derived nanoparticles to provide contrast to human embryonic stem cells without affecting their pluripotency and to monitor their differentiation into neuron-like cells. Acta Biomaterialia, 2018, 78, 274-284.	4.1	12
54	Reconfigurable XOR and INHIBIT Logic Gates Based on Multifuelâ€Đriven Mg/Al Janus Micromotor. Advanced Materials Technologies, 2018, 3, 1800208.	3.0	6

#	Article	IF	CITATIONS
55	L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar <i>p</i> -i- <i>n</i> Perovskite Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 1264-1271.	2.2	1
56	Enhancement of the efficiency and stability of planar p-i-n perovskite solar cells via incorporation of an amine-modified fullerene derivative as a cathode buffer layer. Science China Chemistry, 2017, 60, 136-143.	4.2	25
57	High-resolution characterization of hexagonal boron nitride coatings exposed to aqueous and air oxidative environments. Nano Research, 2017, 10, 2046-2055.	5.8	21
58	Ultra-broadband optical amplification at telecommunication wavelengths achieved by bismuth-activated lead iodide perovskites. Journal of Materials Chemistry C, 2017, 5, 2591-2596.	2.7	19
59	Towards a full understanding of regioisomer effects of indene-C ₆₀ bisadduct acceptors in bulk heterojunction polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 10206-10219.	5.2	31
60	Chemical Modification of <i>n</i> -Type-Material Naphthalene Diimide on ITO for Efficient and Stable Inverted Polymer Solar Cells. Langmuir, 2017, 33, 8679-8685.	1.6	11
61	A two-dimension-conjugated small molecule for efficient ternary organic solar cells. Organic Electronics, 2017, 48, 179-187.	1.4	15
62	Aggregation Induced Emission Fluorogens Light Cells via Microtubules: Accessing the Mechanisms of Intracellular Trafficking of Ionic Substances. Langmuir, 2017, 33, 5947-5956.	1.6	2
63	Bilayers directly scrolling up to form nanotubes via self-assembly of an achiral small molecule. Nanoscale, 2017, 9, 1491-1495.	2.8	9
64	Catechol derivatives as dopants in PEDOT:PSS to improve the performance of p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24275-24281.	5.2	37
65	A phototactic micromotor based on platinum nanoparticle decorated carbon nitride. Nanoscale, 2017, 9, 18516-18522.	2.8	61
66	Highly efficient and thickness-tolerable bulk heterojunction polymer solar cells based on P3HT donor and a low-bandgap non-fullerene acceptor. Journal of Power Sources, 2017, 364, 426-431.	4.0	9
67	Comprehensive Study of Sol–Gel versus Hydrolysis–Condensation Methods To Prepare ZnO Films: Electron Transport Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 26234-26241.	4.0	28
68	Diblock Copolymer PF-b-PDMAEMA as Effective Cathode Interfacial Material in Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 42961-42968.	4.0	10
69	Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 25323-25331.	4.0	115
70	Fullerenes and derivatives as electron transport materials in perovskite solar cells. Science China Chemistry, 2017, 60, 144-150.	4.2	28
71	Zwitter-Ionic Polymer Applied as Electron Transportation Layer for Improving the Performance of Polymer Solar Cells. Polymers, 2017, 9, 566.	2.0	9
72	Tuning Surface Energy of Conjugated Polymers via Fluorine Substitution of Side Alkyl Chains: Influence on Phase Separation of Thin Films and Performance of Polymer Solar Cells. ACS Omega, 2017, 2, 2489-2498.	1.6	25

#	Article	IF	CITATIONS
73	Comprehensive Study of the Effect of DPE Additive on Photovoltaic Performance of 5,6-Difluoro-benzo[1,2,5]thiadiazole Based Donor-acceptor Copolymers. Acta Chimica Sinica, 2017, 75, 464.	0.5	9
74	High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 030701.	0.2	7
75	Ultrabroad Photoluminescence and Electroluminescence at New Wavelengths from Doped Organometal Halide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 2735-2741.	2.1	97
76	Donor-acceptor polymers based on 5,6-difluoro-benzo[1,2,5]thiadiazole for high performance solar cells. Organic Electronics, 2016, 33, 187-193.	1.4	5
77	Dihydrobenzofuran-C60 bisadducts as electron acceptors in polymer solar cells: Effect of alkyl substituents. Synthetic Metals, 2016, 215, 176-183.	2.1	5
78	Solvent-resistant ITO work function tuning by an acridine derivative enables high performance inverted polymer solar cells. Organic Electronics, 2016, 35, 6-11.	1.4	12
79	Supramolecular Chirality in Achiral Polyfluorene: Chiral Gelation, Memory of Chirality, and Chiral Sensing Property. Macromolecules, 2016, 49, 3214-3221.	2.2	103
80	Regulatory roles of interferon-inducible protein 204 on differentiation and vasculogenic activity of endothelial progenitor cells. Stem Cell Research and Therapy, 2016, 7, 111.	2.4	4
81	Enhanced Aerogen–π Interaction by a Cation–π Force. Chemistry - A European Journal, 2016, 22, 2586-2589.	1.7	21
82	Facilitating Electron Transportation in Perovskite Solar Cells via Water-Soluble Fullerenol Interlayers. ACS Applied Materials & Interfaces, 2016, 8, 18284-18291.	4.0	78
83	AFM Study of Surface Nanobubbles on Binary Self-Assembled Monolayers on Ultraflat Gold with Identical Macroscopic Static Water Contact Angles and Different Terminal Functional Groups. Langmuir, 2016, 32, 11172-11178.	1.6	12
84	Optimized Model Surfaces for Advanced Atomic Force Microscopy Studies of Surface Nanobubbles. Langmuir, 2016, 32, 11179-11187.	1.6	8
85	Highly selective fluorescent chemosensor based on benzothiazole for detection of Zn2+. Sensors and Actuators B: Chemical, 2016, 225, 167-173.	4.0	36
86	Copolymers based on thiazolothiazole-dithienosilole as hole-transporting materials for high efficient perovskite solar cells. Organic Electronics, 2016, 33, 142-149.	1.4	29
87	Easily accessible polymer additives for tuning the crystal-growth of perovskite thin-films for highly efficient solar cells. Nanoscale, 2016, 8, 5552-5558.	2.8	83
88	Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 5890-5897.	5.2	219
89	Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 321-326.	5.2	96
90	ls Aerogen–π Interaction Capable of Initiating the Noncovalent Chemistry of Group 18?. Chemistry - an Asian Journal, 2015, 10, 2615-2618.	1.7	27

#	Article	IF	CITATIONS
91	Directional supracolloidal self-assembly via dynamic covalent bonds and metal coordination. Soft Matter, 2015, 11, 5546-5553.	1.2	11
92	Controlled self-assembly of a pyrene-based bolaamphiphile by acetate ions: from nanodisks to nanofibers by fluorescence enhancement. Soft Matter, 2015, 11, 4424-4429.	1.2	10
93	Triple Cathode Buffer Layers Composed of PCBM, C ₆₀ , and LiF for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 6230-6237.	4.0	136
94	Cooperative assembly of an active layer utilizing the synergistic effect of a functional fullerene triad as an acceptor for efficient P3HT-based PSCs. Journal of Materials Chemistry A, 2015, 3, 17991-18000.	5.2	7
95	Efficiency enhancement from [60]fulleropyrrolidine-based polymer solar cells through N-substitution manipulation. Carbon, 2015, 92, 185-192.	5.4	10
96	Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 9278-9284.	5.2	61
97	Polymorphic transformation towards formation of nanotubes by self-assembly of an achiral molecule. Nanoscale, 2015, 7, 17848-17854.	2.8	9
98	High performance planar <i>p-i-n</i> perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers. Applied Physics Letters, 2015, 107, .	1.5	42
99	Supramolecular [60]Fullerene Liquid Crystals Formed By Selfâ€Organized Twoâ€Dimensional Crystals. Angewandte Chemie - International Edition, 2015, 54, 114-117.	7.2	56
100	Effect of PEI cathode interlayer on work function and interface resistance of ITO electrode in the inverted polymer solar cells. Organic Electronics, 2015, 17, 94-101.	1.4	76
101	Controlled self-assembly of helical nano-ribbons formed by achiral amphiphiles. Nanoscale, 2015, 7, 930-935.	2.8	27
102	Concentration-dependent and light-responsive self-assembly of bolaamphiphiles bearing α-cyanostilbene based photochromophore. Soft Matter, 2015, 11, 798-805.	1.2	27
103	Water-soluble nano-fluorogens fabricated by self-assembly of bolaamphiphiles bearing AIE moieties: towards application in cell imaging. Journal of Materials Chemistry B, 2015, 3, 491-497.	2.9	32
104	Lowering the Work Function of ITO by Covalent Surface Grafting of Aziridine: Application in Inverted Polymer Solar Cells. Advanced Materials Interfaces, 2015, 2, 1400397.	1.9	18
105	Control of Lysozyme Adsorption by pH on Surfaces Modified with Polyampholyte Brushes. Langmuir, 2014, 30, 501-508.	1.6	31
106	Mono-molecule-layer nano-ribbons formed by self-assembly of bolaamphiphiles. Soft Matter, 2014, 10, 1018.	1.2	18
107	Trapping Light with a Nanostructured CeO _x /Al Back Electrode for Highâ€Performance Polymer Solar Cells. Advanced Materials Interfaces, 2014, 1, 1400197.	1.9	33
108	Self-assembly of an azobenzene-containing polymer prepared by a multi-component reaction: supramolecular nanospheres with photo-induced deformation properties. Soft Matter, 2014, 10, 4833-4839.	1.2	16

#	Article	IF	CITATIONS
109	Catalase-like and Peroxidase-like Catalytic Activities of Silicon Nanowire Arrays. Langmuir, 2013, 29, 3-7.	1.6	26
110	The Flavoprotein Dodecin as a Redox Probe for Electron Transfer through DNA. Angewandte Chemie - International Edition, 2013, 52, 4950-4953.	7.2	12
111	Block Copolymer Modified Surfaces for Conjugation of Biomacromolecules with Control of Quantity and Activity. Langmuir, 2013, 29, 1122-1128.	1.6	40
112	Cell Adhesion on a POEGMA-Modified Topographical Surface. Langmuir, 2012, 28, 17011-17018.	1.6	43
113	Preparation of a Poly-nanocage Dynamer: Correlating the Growth of Polymer Strands Using Constitutional Dynamic Chemistry and Heteroleptic Aggregation. Journal of the American Chemical Society, 2012, 134, 150-153.	6.6	53
114	The Role of the Liquid–Liquid Interface in the Synthesis of Nonequilibrium Crystalline Wurtzite ZnS at Room Temperature. Crystal Growth and Design, 2012, 12, 1173-1179.	1.4	9
115	Enhancing Specific Binding of L929 Fibroblasts: Effects of Multiâ€Scale Topography of GRGDY Peptide Modified Surfaces. Macromolecular Bioscience, 2012, 12, 1391-1400.	2.1	21
116	Facile Synthesis of Thermally Stable Poly(<i>N</i> -vinylpyrrolidone)-Modified Gold Surfaces by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2012, 28, 9451-9459.	1.6	47
117	Contact Angles of Surface Nanobubbles on Mixed Self-Assembled Monolayers with Systematically Varied Macroscopic Wettability by Atomic Force Microscopy. Langmuir, 2011, 27, 8223-8232.	1.6	80
118	Binary Self-Assembled Monolayers of Alkanethiols on Gold: Deposition from Solution versus Microcontact Printing and the Study of Surface Nanobubbles. Langmuir, 2011, 27, 1353-1358.	1.6	11
119	Microcontact Printing of Monodiamond Nanoparticles: An Effective Route to Patterned Diamond Structure Fabrication. Langmuir, 2011, 27, 11981-11989.	1.6	25
120	Controlled Wettability of Diamond/l²-SiC Composite Thin Films for Biosensoric Applications. Journal of Physical Chemistry C, 2010, 114, 20207-20212.	1.5	33
121	Stimuli-Responsive Wettability of Nonplanar Substrates: pH-Controlled Floatation and Supporting Force. Langmuir, 2010, 26, 104-108.	1.6	39
122	Fabrication of Hierarchical CaCO ₃ Mesoporous Spheres: Particle-Mediated Self-Organization Induced by Biphase Interfaces and SAMs. Langmuir, 2010, 26, 5882-5888.	1.6	19
123	Metalâ^'Ligand Coordination-Induced Self-Assembly of Bolaamphiphiles Bearing Bipyrimidine. Langmuir, 2009, 25, 13306-13310.	1.6	25
124	Self-Organization of a Polymerizable Bolaamphiphile Bearing a Diacetylene Group and <scp>l</scp> -Aspartic Acid Group. Langmuir, 2009, 25, 8968-8973.	1.6	13
125	Interfacial Self-Organization of Bolaamphiphiles Bearing Mesogenic Groups:  Relationships between the Molecular Structures and Their Self-Organized Morphologies. Langmuir, 2008, 24, 3734-3739.	1.6	30
126	Self-Organization of Bolaamphiphile Bearing Biphenyl Mesogen and Aspartic-Acid Headgroups. Journal of Physical Chemistry C, 2008, 112, 3308-3313.	1.5	14

#	Article	IF	CITATIONS
127	Self-Organization of Polymerizable Bolaamphiphiles Bearing Diacetylene Mesogenic Group. Langmuir, 2007, 23, 5936-5941.	1.6	21
128	Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings. Chemistry of Materials, 2007, 19, 14-17.	3.2	93
129	Formation of Multilayered Vaterite via Phase Separation, Crystalline Transformation, and Self-Assembly of Nanoparticles at the Air/Water Interface. Journal of Physical Chemistry C, 2007, 111, 5628-5632.	1.5	8
130	Supramolecular Nanofibers by Self-Organization of Bola-amphiphiles through a Combination of Hydrogen Bonding and π–π Stacking Interactions. Advanced Materials, 2007, 19, 416-420.	11.1	135
131	Stabilizing interfacial micellar aggregates by enhanced supramolecular interaction or surface polymerization. Pure and Applied Chemistry, 2006, 78, 1015-1023.	0.9	9
132	Growth and characteristics of ZnO thin film on CaF2 (11–21) substrate by metalorganic vapor phase epitaxy. Applied Surface Science, 2005, 243, 24-29.	3.1	8
133	Self-assembly and micellization of amphiphilic rod–coil block oligomer at the mica–water interface. Journal of Colloid and Interface Science, 2005, 290, 557-563.	5.0	8
134	Preparation of gold colloid monolayer by immunological identification. Colloids and Surfaces B: Biointerfaces, 2005, 40, 169-172.	2.5	22
135	The Introduction of Ï∈-Ï€ Stacking Moieties for Fabricating Stable Micellar Structure: Formation and Dynamics of Disklike Micelles. Angewandte Chemie - International Edition, 2005, 44, 4731-4735.	7.2	103
136	Polymer Micelles as Building Blocks for Layer-by-Layer Assembly:  An Approach for Incorporation and Controlled Release of Water-Insoluble Dyes. Chemistry of Materials, 2005, 17, 5065-5069.	3.2	143
137	Diversified Pattern Formation in Self-Assembly of Bolaform Amphiphiles Bearing Mesogenic Groups at	1.6	5