Jeffrey R Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6006700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying Cellâ€Derived Changes in Collagen Synthesis, Alignment, and Mechanics in a 3D Connective Tissue Model. Advanced Science, 2022, 9, e2103939.	5.6	4
2	3D Microtissues Mimic the Architecture, Estradiol Synthesis, and Gap Junction Intercellular Communication of the Avascular Granulosa. Toxicological Sciences, 2022, 186, 29-42.	1.4	6
3	Toward Automated Additive Manufacturing of Living Bio-Tubes Using Ring-Shaped Building Units. SLAS Technology, 2020, 25, 608-620.	1.0	3
4	3D Confocal Fluorescence Microscopy Analysis of Skeletal Muscle Myogenesis in Self Assembled 3D Microtissues. Microscopy and Microanalysis, 2019, 25, 1256-1257.	0.2	0
5	Cell Mimicking Microparticles Influence the Organization, Growth, and Mechanophenotype of Stem Cell Spheroids. Annals of Biomedical Engineering, 2018, 46, 1146-1159.	1.3	14
6	Quantitative Live-Cell Confocal Imaging of 3D Spheroids in a High-Throughput Format. SLAS Technology, 2018, 23, 231-242.	1.0	29
7	Directing fibroblast self-assembly to fabricate highly-aligned, collagen-rich matrices. Acta Biomaterialia, 2018, 81, 70-79.	4.1	20
8	Hydrodynamics of the Bio-Gripper: A Fluid-Driven "Claw Machine―for Soft Microtissue Translocation. SLAS Technology, 2018, 23, 540-549.	1.0	2
9	Perfused Organ Cellâ€Đense Macrotissues Assembled from Prefabricated Living Microtissues. Advanced Biology, 2018, 2, 1800076.	3.0	9
10	Funnel-Guided Positioning of Multicellular Microtissues to Build Macrotissues. Tissue Engineering - Part C: Methods, 2018, 24, 557-565.	1.1	8
11	The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing. Biofabrication, 2016, 8, 025015.	3.7	19
12	Quantifying the kinetics and morphological changes of the fusion of spheroid building blocks. Biofabrication, 2016, 8, 045003.	3.7	39
13	Accurate quantitative wide-field fluorescence microscopy of 3-D spheroids. BioTechniques, 2016, 61, 237-247.	0.8	9
14	Harnessing cellular-derived forces in self-assembled microtissues to control the synthesis and alignment of ECM. Biomaterials, 2016, 77, 120-129.	5.7	34
15	Into the depths: Techniques for in vitro three-dimensional microtissue visualization. BioTechniques, 2015, 59, 279-286.	0.8	36
16	Three-Dimensional Neural Spheroid Culture: An <i>In Vitro</i> Model for Cortical Studies. Tissue Engineering - Part C: Methods, 2015, 21, 1274-1283.	1.1	111
17	Architecture of Chimeric Spheroids Controls Drug Transport. Cancer Microenvironment, 2015, 8, 101-109.	3.1	13
18	A 3D spheroid system to evaluate inhibitors of the ABCG2 transporter in drug uptake and penetration. Technology, 2015, 03, 54-63.	1.4	5

#	Article	IF	CITATIONS
19	Bio-Pick, Place, and Perfuse: A New Instrument for Three-Dimensional Tissue Engineering. Tissue Engineering - Part C: Methods, 2015, 21, 737-746.	1.1	65
20	Micro-Mold Design Controls the 3D Morphological Evolution of Self-Assembling Multicellular Microtissues. Tissue Engineering - Part A, 2014, 20, 1134-1144.	1.6	18
21	Multilayer Spheroids To Quantify Drug Uptake and Diffusion in 3D. Molecular Pharmaceutics, 2014, 11, 2071-2081.	2.3	74
22	Control of the timing and dosage of IGF-I delivery from encapsulated cells. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 470-478.	1.3	0
23	Necking and failure of constrained 3D microtissues induced by cellular tension. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20923-20928.	3.3	46
24	Necking and Failure of Constrained Contractile 3D Microtissues: Role of Geometry and Stiffness. , 2013, , .		0
25	Formation of Multicellular Microtissues and Applications in Biofabrication. , 2013, , 149-166.		3
26	Mechanotransduction is enhanced by the synergistic action of heterotypic cell interactions and TGFâ€Ĥ21. FASEB Journal, 2012, 26, 2522-2530.	0.2	13
27	Quantification of the Kinetics and Extent of Self-Sorting in Three Dimensional Spheroids. Tissue Engineering - Part C: Methods, 2012, 18, 302-309.	1.1	21
28	Penetration of Endothelial Cell Coated Multicellular Tumor Spheroids by Iron Oxide Nanoparticles. Theranostics, 2012, 2, 66-75.	4.6	45
29	Pannexin1 Drives Multicellular Aggregate Compaction via a Signaling Cascade That Remodels the Actin Cytoskeleton. Journal of Biological Chemistry, 2012, 287, 8407-8416.	1.6	46
30	Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opinion on Biological Therapy, 2012, 12, 1347-1360.	1.4	413
31	Quantification of the forces driving self-assembly of three-dimensional microtissues. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6993-6998.	3.3	78
32	Directed self-assembly of large scaffold-free multi-cellular honeycomb structures. Biofabrication, 2011, 3, 034110.	3.7	39
33	Bioengineering Anembryonic Human Trophoblast Vesicles. Reproductive Sciences, 2011, 18, 128-135.	1.1	8
34	Designing polyHEMA substrates that mimic the viscoelastic response of soft tissue. Journal of Biomechanics, 2011, 44, 1491-1498.	0.9	8
35	Connexonâ€mediated cell adhesion drives microtissue selfâ€assembly. FASEB Journal, 2011, 25, 255-264.	0.2	63
36	Rapid screening, <i>in vitro</i> study of metal oxide and polymer hybrids as delivery coatings for improved softâ€tissue integration of implants. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1094-1104.	2.1	8

#	Article	IF	CITATIONS
37	In vitro maturation of oocytes via the pre-fabricated self-assembled artificial human ovary. Journal of Assisted Reproduction and Genetics, 2010, 27, 743-750.	1.2	48
38	In Remembrance: Michael J. Lysaght, 1942–2009. Tissue Engineering - Part A, 2010, 16, 767-768.	1.6	1
39	Self-Assembly and Tissue Fusion of Toroid-Shaped Minimal Building Units. Tissue Engineering - Part A, 2010, 16, 2051-2061.	1.6	76
40	A Localizable, Biological-based System for the Delivery of Bioactive IGF-1 Utilizing Microencapsulated Genetically Modified Human Fibroblasts. ASAIO Journal, 2009, 55, 259-265.	0.9	5
41	Fibroblast elongation and dendritic extensions in constrained versus unconstrained microtissues. Cytoskeleton, 2009, 66, 129-141.	4.4	17
42	Controlled release of vanadium from titanium oxide coatings for improved integration of soft tissue implants. Journal of Biomedical Materials Research - Part A, 2009, 90A, 272-281.	2.1	21
43	Controlling cell position in complex heterotypic 3D microtissues by tissue fusion. Biotechnology and Bioengineering, 2009, 102, 1231-1241.	1.7	89
44	Encapsulated Arrays of Self-Assembled Microtissues: An Alternative to Spherical Microcapsules. Tissue Engineering - Part A, 2009, 15, 387-395.	1.6	20
45	Miniaturization of an Anoikis assay using non-adhesive micromolded hydrogels. Cytotechnology, 2008, 56, 81-90.	0.7	11
46	Au–Fe ₃ O ₄ Dumbbell Nanoparticles as Dualâ€Functional Probes. Angewandte Chemie - International Edition, 2008, 47, 173-176.	7.2	490
47	Viscoelastic response of human skin to low magnitude physiologically relevant shear. Journal of Biomechanics, 2008, 41, 2689-2695.	0.9	99
48	Mammalian Target of Rapamycin Contributes to the Acquired Apoptotic Resistance of Human Mesothelioma Multicellular Spheroids. Journal of Biological Chemistry, 2008, 283, 13021-13030.	1.6	130
49	Cytoskeletal-Mediated Tension Modulates the Directed Self-Assembly of Microtissues. Tissue Engineering - Part A, 2008, 14, 1989-1997.	1.6	53
50	Rods, tori, and honeycombs: the directed selfâ€assembly of microtissues with prescribed microscale geometries. FASEB Journal, 2007, 21, 4005-4012.	0.2	148
51	Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. BioTechniques, 2007, 43, 494-500.	0.8	178
52	Inhibition of proliferation of Pseudomonas aeruginosa by KGF in an experimental burn model using human cultured keratinocytes. Burns, 2007, 33, 613-620.	1.1	12
53	Dynamics of the Self-Assembly of Complex Cellular Aggregates on Micromolded Nonadhesive Hydrogels. Tissue Engineering, 2007, 13, 2087-2094.	4.9	200
54	Metal oxide coated cell culture arrays for rapid biological screening. Journal of Biomedical Materials Research - Part A, 2007, 83A, 853-860.	2.1	5

#	Article	IF	CITATIONS
55	A TGF-β1-Dependent Autocrine Loop Regulates the Structure of Focal Adhesions in Hypertrophic Scar Fibroblasts. Journal of Investigative Dermatology, 2006, 126, 963-970.	0.3	33
56	Upregulation of TGF-β1 Expression May Be Necessary but Is Not Sufficient for Excessive Scarring. Journal of Investigative Dermatology, 2006, 126, 1168-1176.	0.3	80
57	Microencapsulated Cells Genetically Modified to Overexpress Human Transforming Growth Factor-β1: Viability and Functionality in Allogeneic and Xenogeneic Implant Models. Tissue Engineering, 2006, 12, 1733-1739.	4.9	17
58	Microencapsulated Cells Genetically Modified to Overexpress Human Transforming Growth Factor-1: Viability and Functionality in Allogeneic and Xenogeneic Implant Models. Tissue Engineering, 2006, .	4.9	0
59	In vitro Characterization of TGF-??1 Release from Genetically Modified Fibroblasts in Ca2+-Alginate Microcapsules. ASAIO Journal, 2005, 51, 379-384.	0.9	15
60	Sequestration and Synthesis: The Source of Insulin in Cell Clusters Differentiated from Murine Embryonic Stem Cells. Stem Cells, 2005, 23, 862-867.	1.4	35
61	Origin of Insulin Secreted from Islet-Like Cell Clusters Derived from Murine Embryonic Stem Cells. Cloning and Stem Cells, 2005, 7, 226-231.	2.6	14
62	Allogeneic versus Xenogeneic Immune Reaction to Bioengineered Skin Grafts. Cell Transplantation, 2004, 13, 701-712.	1.2	41
63	FGF-7 Expression Enhances the Performance of Bioengineered Skin. Molecular Therapy, 2004, 10, 76-85.	3.7	43
64	Charged Polymers Modulate Retrovirus Transduction via Membrane Charge Neutralization and Virus Aggregation. Biophysical Journal, 2004, 86, 1234-1242.	0.2	132
65	Experimental model of cultured skin graft. Acta Cirurgica Brasileira, 2004, 19, 4-10.	0.3	5
66	Experimental model of cultured keratinocytes. Acta Cirurgica Brasileira, 2003, 18, 04-14.	0.3	8
67	Quantitative Measurement of the Concentration of Active Recombinant Retrovirus. , 2002, 69, 161-172.		2
68	Transient Hyperproliferation of a Transgenic Human Epidermis Expressing Hepatocyte Growth Factor. Cell Transplantation, 2002, 11, 385-395.	1.2	26
69	Survival of fetal skin grafts is prolonged on the human peripheral blood lymphocyte reconstituted???severe combined immunodeficient mouse/skin allograft model1. Transplantation, 2002, 73, 519-528.	0.5	19
70	Interleukin-1α and Interleukin-6 Enhance the Antibacterial Properties of Cultured Composite Keratinocyte Grafts. Annals of Surgery, 2002, 235, 113-124.	2.1	67
71	Platelet-derived growth factor-AA-mediated functional angiogenesis in the rat epigastric island flap after genetic modification of fibroblasts is ischemia dependent. Surgery, 2002, 131, 393-400.	1.0	17
72	Cryopreservation of fetal skin is improved by extracellular trehalose. Cryobiology, 2002, 44, 218-228.	0.3	71

#	Article	IF	CITATIONS
73	Contraction of the composite skin graft and autograft. Canadian Journal of Plastic Surgery, 2002, 10, 155-157.	0.4	0
74	Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophysical Chemistry, 2002, 97, 159-172.	1.5	161
75	Complexation of Retrovirus with Cationic and Anionic Polymers Increases the Efficiency of Gene Transfer. Human Gene Therapy, 2001, 12, 1611-1621.	1.4	67
76	Initial experience with a composite autologous skin substitute. Burns, 2001, 27, 421-424.	1.1	60
77	Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB Journal, 2001, 15, 898-906.	0.2	26
78	Genetic modification of cultured skin substitutes by transduction of human keratinocytes and fibroblasts with platelet-derived growth factor-A. Wound Repair and Regeneration, 2001, 8, 26-35.	1.5	33
79	Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB Journal, 2001, 15, 898-906.	0.2	131
80	Analysis of Electrostatic Effects on the Success of Retroviral-Mediated Gene Delivery. Materials Research Society Symposia Proceedings, 2000, 662, 1.	0.1	0
81	Effects of plasma exposure on cultured hepatocytes: Implications for bioartificial liver support. , 2000, 51, 100-111.		32
82	Plasmin Triggers Rapid Contraction and Degradation of Fibroblast-Populated Collagen Lattices. Journal of Investigative Dermatology, 2000, 114, 647-653.	0.3	54
83	Microfabrication of an analog of the basal lamina: biocompatible membranes with complex topographies. FASEB Journal, 2000, 14, 593-602.	0.2	79
84	Erratum in print version of "Toward a More Accurate Quantitation of the Activity of Recombinant Retroviruses: Alternatives to Titer and Multiplicity of Infection". Journal of Virology, 2000, 74, 3431-3431.	1.5	55
85	Toward a More Accurate Quantitation of the Activity of Recombinant Retroviruses: Alternatives to Titer and Multiplicity of Infection. Journal of Virology, 2000, 74, 1258-1266.	1.5	51
86	Persistent Transgene Expression and Normal Differentiation of Immortalized Human Keratinocytes In Vivo. Journal of Investigative Dermatology, 1999, 112, 233-239.	0.3	14
87	Particle-Mediated Gene Transfer of PDGF Isoforms Promotes Wound Repair. Journal of Investigative Dermatology, 1999, 112, 297-302.	0.3	107
88	Large-Scale Processing of Recombinant Retroviruses for Gene Therapy. Biotechnology Progress, 1999, 15, 1-11.	1.3	93
89	Differential Inhibition of Retrovirus Transduction by Proteoglycans and Free Glycosaminoglycans. Biotechnology Progress, 1999, 15, 397-406.	1.3	30

90 Kinetics of retrovirus production and decay. , 1999, 63, 654-662.

88

#	Article	IF	CITATIONS
91	Regulation of the Spatial Organization of Mesenchymal Connective Tissue. American Journal of Pathology, 1999, 154, 281-289.	1.9	33
92	Kinetics of retrovirus production and decay. Biotechnology and Bioengineering, 1999, 63, 654-662.	1.7	2
93	Stabilization of Active Recombinant Retroviruses in an Amorphous Dry State with Trehalose. Biotechnology Progress, 1998, 14, 615-620.	1.3	51
94	Removal of proteoglycans increases efficiency of retroviral gene transfer. , 1998, 58, 23-34.		38
95	Genetically modified fibroblasts induce angiogenesis in the rat epigastric island flap. Langenbeck's Archives of Surgery, 1998, 383, 345-350.	0.8	16
96	Characterization of a Composite Tissue Model that Supports Clonal Growth of Human Melanocytes In Vitro and In Vivo. Journal of Investigative Dermatology, 1998, 111, 810-816.	0.3	11
97	Genetically Modified Human Keratinocytes Overexpressing PDGF-A Enhance the Performance of a Composite Skin Graft. Human Gene Therapy, 1998, 9, 529-539.	1.4	115
98	Removal of the Membrane-anchoring Domain of Epidermal Growth Factor Leads to Intracrine Signaling and Disruption of Mammary Epithelial Cell Organization. Journal of Cell Biology, 1998, 143, 1317-1328.	2.3	55
99	Gene Therapy in Tissue Engineering. , 1998, , 278-310.		2
100	Covalent Proteinâ~'Oligonucleotide Conjugates for Efficient Delivery of Antisense Molecules. Bioconjugate Chemistry, 1997, 8, 935-940.	1.8	56
101	Use of Cloned Genetically Modified Human Fibroblasts to Assess Long-Term Survival <i>In Vivo</i> . Human Gene Therapy, 1997, 8, 523-532.	1.4	12
102	Gene therapy for tissue repair: approaches and prospects. Journal of Plastic, Reconstructive and Aesthetic Surgery, 1997, 50, 491-500.	1.1	39
103	DIFFERENCES IN DERMAL ANALOGS INFLUENCE SUBSEQUENT PIGMENTATION, EPIDERMAL DIFFERENTIATION, BASEMENT MEMBRANE, AND RETE RIDGE FORMATION OF TRANSPLANTED COMPOSITE SKIN GRAFTS1. Transplantation, 1997, 64, 454-465.	0.5	53
104	Enhanced function of cultured epithelium by genetic modification: Cell-based synthesis and delivery of growth factors. , 1996, 52, 15-23.		13
105	Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nature Medicine, 1996, 2, 1263-1267.	15.2	167
106	Targeted Expression of Insulin-Like Growth Factor to Human Keratinocytes: Modification of the Autocrine Control of Keratinocyte Proliferation. Journal of Investigative Dermatology, 1996, 107, 113-120.	0.3	59
107	Evaluation of Human Skin Reconstituted from Composite Grafts of Cultured Keratinocytes and Human Acellular Dermis Transplanted to Athymic Mice. Journal of Investigative Dermatology, 1996, 107, 121-127.	0.3	114
108	Sustained Production of Human Transferrin by Transduced Fibroblasts Implanted into Athymic Mice: A Model for Somatic Gene Therapy. Journal of Investigative Dermatology, 1995, 104, 171-176.	0.3	26

#	Article	IF	CITATIONS
109	Genetically Modified Human Epidermis Overexpressing PDCF-A Directs the Development of a Cellular and Vascular Connective Tissue Stroma When Transplanted to Athymic Mice–Implications for the Use of Genetically Modified Keratinocytes to Modulate Dermal Regeneration. Journal of Investigative Dermatology, 1995, 105, 756-763.	0.3	95
110	Rapid Quantitation of Recombinant Retroviruses. Biotechnology Progress, 1994, 10, 441-446.	1.3	15
111	Advances in recombinant retroviruses for gene delivery. Advanced Drug Delivery Reviews, 1993, 12, 143-158.	6.6	28
112	The importance of proline on long-term hepatocyte function in a collagen gel sandwich configuration: Regulation of protein secretion. Biotechnology and Bioengineering, 1992, 40, 298-305.	1.7	30