Martina De Pascale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6006669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Azobenzene isomerization in polymer co-crystalline phases. Polymer, 2012, 53, 2727-2735.	1.8	33
2	Covalent Proximity Scanning of a Distal Cysteine to Target PI3Kα. Journal of the American Chemical Society, 2022, 144, 6326-6342.	6.6	27
3	Graphite oxide as catalyst for diastereoselective Mukaiyama aldol reaction of 2-(trimethylsilyloxy)furan in solvent free conditions. Journal of Molecular Catalysis A, 2015, 408, 237-241.	4.8	18
4	Comparison of 2 strategies to enhance pyridoclax solubility: Nanoemulsion delivery system versus salt synthesis. European Journal of Pharmaceutical Sciences, 2017, 97, 218-226.	1.9	18
5	4-(Difluoromethyl)-5-(4-((3 <i>R</i> ,5 <i>S</i>)-3,5-dimethylmorpholino)-6-((<i>R</i>)-3-methylmorpholino)-1,3,5- (PQR626), a Potent, Orally Available, and Brain-Penetrant mTOR Inhibitor for the Treatment of Neurological Disorders. Journal of Medicinal Chemistry, 2020, 63, 13595-13617.	triazin-2-y 2.9	l)pyridin-2-ar 17
6	Structure-guided design of pyridoclax derivatives based on Noxa / Mcl-1 interaction mode. European Journal of Medicinal Chemistry, 2018, 159, 357-380.	2.6	12
7	Chemical and Structural Strategies to Selectively Target mTOR Kinase. ChemMedChem, 2021, 16, 2744-2759.	1.6	12
8	Second-generation tricyclic pyrimido-pyrrolo-oxazine mTOR inhibitor with predicted blood–brain barrier permeability. RSC Medicinal Chemistry, 2021, 12, 579-583.	1.7	6
9	Synthesis of Pyridoclax Analogues: Insight into Their Druggability by Investigating Their Physicochemical Properties and Interactions with Membranes. ChemMedChem, 2020, 15, 136-154.	1.6	4
10	Abstract 3996: Pyridoclax and its derivatives from oligopyridine family directly inhibit Mcl-1 and exert potent antitumor effects on ovarian cancer in vitro and in vivo. , 2018, , .		1