Emmanouil Dimakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6006567/publications.pdf

Version: 2024-02-01

516710 526287 31 755 16 27 citations h-index g-index papers 31 31 31 1025 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Coaxial Multishell (In,Ga)As/GaAs Nanowires for Near-Infrared Emission on Si Substrates. Nano Letters, 2014, 14, 2604-2609.	9.1	111
2	Self-Assisted Nucleation and Vapor–Solid Growth of InAs Nanowires on Bare Si(111). Crystal Growth and Design, 2011, 11, 4001-4008.	3.0	95
3	Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nature Communications, 2019, 10, 2793.	12.8	78
4	Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays. Optics Express, 2010, 18, 21322.	3 . 4	69
5	Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays. Optics Letters, 2012, 37, 79.	3.3	42
6	Shell-doping of GaAs nanowires with Si for n-type conductivity. Nano Research, 2012, 5, 796-804.	10.4	42
7	Plasmon enhanced light emission from InGaN quantum wells via coupling to chemically synthesized silver nanoparticles. Applied Physics Letters, 2009, 95, 151109.	3.3	30
8	Correlation of Electrical and Structural Properties of Single As-Grown GaAs Nanowires on Si (111) Substrates. Nano Letters, 2015, 15, 981-989.	9.1	29
9	High electron mobility in strained GaAs nanowires. Nature Communications, 2021, 12, 6642.	12.8	28
10	Role of Liquid Indium in the Structural Purity of Wurtzite InAs Nanowires That Grow on Si(111). Nano Letters, 2014, 14, 6878-6883.	9.1	27
11	Decoupling the Two Roles of Ga Droplets in the Self-Catalyzed Growth of GaAs Nanowires on SiO _{<i>x</i>} /Si(111) Substrates. Crystal Growth and Design, 2017, 17, 5276-5282.	3.0	26
12	Droplet-Confined Alternate Pulsed Epitaxy of GaAs Nanowires on Si Substrates down to CMOS-Compatible Temperatures. Nano Letters, 2016, 16, 4032-4039.	9.1	20
13	Plasmonic off-axis unidirectional beaming of quantum-well luminescence. Applied Physics Letters, 2013, 103, .	3.3	18
14	How Indium Nitride Senses Water. Nano Letters, 2017, 17, 7339-7344.	9.1	18
15	Polytypism in GaAs nanowires: determination ofÂthe interplanar spacing of wurtzite GaAs by X-ray diffraction. Journal of Synchrotron Radiation, 2015, 22, 67-75.	2.4	17
16	Plan-view transmission electron microscopy investigation of GaAs/(In,Ga)As core-shell nanowires. Applied Physics Letters, 2014, 105, 121602.	3.3	16
17	<i>In situ</i> doping of catalyst-free InAs nanowires with Si: Growth, polytypism, and local vibrational modes of Si. Applied Physics Letters, 2013, 103, .	3.3	15
18	A simple route to synchronized nucleation of self-catalyzed GaAs nanowires on silicon for sub-Poissonian length distributions. Nanotechnology, 2018, 29, 504004.	2.6	15

#	Article	IF	CITATIONS
19	Nonlinear Charge Transport in InGaAs Nanowires at Terahertz Frequencies. Nano Letters, 2020, 20, 3225-3231.	9.1	12
20	Ultrafast carrier dynamics in InxGa1â^'xN (0001) epilayers: Effects of high fluence excitation. Applied Physics Letters, 2006, 88, 121128.	3.3	10
21	Nonlinear plasmonic response of doped nanowires observed by infrared nanospectroscopy. Nanotechnology, 2019, 30, 084003.	2.6	10
22	Electron dynamics in $In < sub > < i > x < / i > < / sub > Ga < sub > 1a^2 < i > x < / i > < / sub > As shells around GaAs nanowires probed by terahertz spectroscopy. Nanotechnology, 2019, 30, 244004.$	2.6	9
23	Broadband Photo-Excited Coherent Acoustic Frequency Combs and Mini-Brillouin-Zone Modes in a MQW-SESAM Structure. Applied Sciences (Switzerland), 2019, 9, 289.	2.5	7
24	Nonlinear carrier recombination and transport features in highly excited InN layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S735-S738.	0.8	6
25	All-THz pump-probe spectroscopy of the intersubband AC-Stark effect in a wide GaAs quantum well. Optics Express, 2020, 28, 25358.	3.4	2
26	Femtosecond time-resolved study in InxGa1â^xN (0001) ultrathin epilayers: Effects of high indium mole fraction and thickness of the films. Applied Physics Letters, 2006, 89, 241109.	3.3	1
27	Impact of strain induced by polymer curing in benzocyclobutene embedded semiconductor nanostructures. Physica Status Solidi - Rapid Research Letters, 2014, 8, 1007-1010.	2.4	1
28	Pump – probe THz spectroscopy study of electronic properties of semiconductor nanowires. , 2019, , .		1
29	Plasmonic nonlinearity in GaAs/In0.20Ga0.80As core/shell nanowires. , 2019, , .		O
30	High-field charge transport in InGaAs nanowires. , 2021, , .		0
31	Nonlinear plasmonic response in GaAs/InGaAs core/shell nanowires. , 2020, , .		O