Mariola Koszytkowska-Stawińska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6006337/publications.pdf

Version: 2024-02-01

Mariola

#	Article	IF	CITATIONS
1	Poly(amidoamine) dendrimer immunosensor for ultrasensitive gravimetric and electrochemical detection of matrix metalloproteinase-9. Talanta, 2022, 247, 123600.	5.5	6
2	Formylation of a metathesis-derived <i>ansa</i> [4]-ferrocene: a simple route to anticancer organometallics. Dalton Transactions, 2020, 49, 11504-11511.	3.3	10
3	New insight into nucleo α-amino acids – Synthesis and SAR studies on cytotoxic activity of β-pyrimidine alanines. Bioorganic Chemistry, 2020, 100, 103864.	4.1	6
4	Ferrocene Amino Acid Ester Uracil Conjugates: Synthesis, Structure, Electrochemistry and Antimicrobial Evaluation. ChemistrySelect, 2019, 4, 11130-11135.	1,5	9
5	Supramolecular Interactions between β-Cyclodextrin and the Nucleobase Derivatives of Ferrocene. Journal of Organic Chemistry, 2019, 84, 15900-15914.	3.2	14
6	Potential bioisosteres of β-uracilalanines derived from 1H-1,2,3-triazole-C-carboxylic acids. Bioorganic Chemistry, 2019, 83, 500-510.	4.1	2
7	Addition of azomethine ylides to carbon-encapsulated iron nanoparticles. Dalton Transactions, 2018, 47, 30-34.	3.3	10
8	Covalent mechanochemical functionalization of carbon-encapsulated iron nanoparticles towards the improvement of their colloidal stability. Dalton Transactions, 2018, 47, 11190-11202.	3.3	3
9	Synthesis of Tegafur by the Alkylation of 5-Fluorouracil under the Lewis Acid and Metal Salt-Free Conditions. Organic Process Research and Development, 2017, 21, 885-889.	2.7	5
10	Grinding-induced functionalization of carbon-encapsulated iron nanoparticles. Green Chemistry, 2017, 19, 3510-3514.	9.0	17
11	A new synthetic access to bicyclic iminosugars—derivatives of polyhydroxy decahydropyrido[1,2-a]azepine. Tetrahedron Letters, 2016, 57, 199-202.	1.4	5
12	Unprotected Xyloseâ€Derived Nitrone in Stereodivergent Synthesis of 4â€Hydroxypiperidine Enantiomers: Weak Lewis Acid Induced Alteration of Stereochemistry in 1,3â€Dipolar Cycloaddition. European Journal of Organic Chemistry, 2015, 2015, 1533-1540.	2.4	8
13	Multicomponent reactions in nucleoside chemistry. Beilstein Journal of Organic Chemistry, 2014, 10, 1706-1732.	2.2	24
14	Convenient synthesis of epimeric indolizidines by the intramolecular 1,3-dipolar cycloaddition of a sugar derived N-(3-alkenyl)nitrone. Tetrahedron, 2013, 69, 9826-9831.	1.9	15
15	Synthesis of novel NH-1,2,3-triazolo-nucleosides by the Banert cascade reaction. Tetrahedron, 2013, 69, 2619-2627.	1.9	14
16	Synthesis of Novel AZA-Analogues of Tiazofurin with 2-[5,5-bis(Hydroxymethyl)Pyrrolidin-2-yl] Framework as Sugar Mimic. Nucleosides, Nucleotides and Nucleic Acids, 2012, 31, 72-84.	1.1	8
17	Synthesis of 1,2,3-triazolo-nucleosides via the post-triazole N-alkylation. Tetrahedron, 2012, 68, 214-225.	1.9	23
18	Synthesis of 1-pyrroline 1-oxides analogous to pseudouridine. Tetrahedron Letters, 2011, 52, 1866-1870.	1.4	6

Mariola

#	Article	IF	CITATIONS
19	Studies on the Synthesis ofN′-Acetyl AZA-Analogues ofGanciclovir—Unexpected Liability ofN′-(2-Hydroxyethyl)-Azanucleosides Under Basic Conditions. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 768-785.	1.1	2
20	Synthesis and antiviral activity evaluation of acyclic 2â€2-azanucleosides bearing a phosphonomethoxy function in the side chain. Bioorganic and Medicinal Chemistry, 2009, 17, 3756-3762.	3.0	16
21	Synthesis and antiviral evaluation of acyclic azanucleosides developed from sulfanilamide as a lead structure. Bioorganic and Medicinal Chemistry, 2008, 16, 8379-8389.	3.0	38
22	Synthesis and Antiviral Properties of Aza-Analogues ofAcyclovir. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 51-64.	1.1	13
23	Synthesis and antiviral properties of aza-analogues of ganciclovir derived from 5,5-bis(hydroxymethyl)pyrrolidin-2-one. Tetrahedron, 2007, 63, 10587-10595.	1.9	10
24	Synthesis of aza-analogues of Ganciclovir. Tetrahedron, 2006, 62, 10325-10331.	1.9	7
25	Facile synthesis of acyclic azanucleosides from N -pivaloyloxymethyl amides and sulfonamides: synthesis of aza-analogues of Ganciclovir. Tetrahedron Letters, 2004, 45, 5437-5440.	1.4	14