
Zhiyuan Cong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6006322/publications.pdf Version: 2024-02-01

7HIVILAN CONC

#	Article	IF	CITATIONS
1	Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. National Science Review, 2019, 6, 796-809.	4.6	271
2	Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nature Communications, 2016, 7, 12574.	5.8	265
3	Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmospheric Chemistry and Physics, 2015, 15, 1573-1584.	1.9	213
4	Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Scientific Reports, 2015, 5, 9580.	1.6	180
5	Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmospheric Environment, 2007, 41, 1180-1187.	1.9	147
6	Characteristics of PM _{2.5} mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. Atmospheric Chemistry and Physics, 2018, 18, 8849-8871.	1.9	144
7	Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmospheric Research, 2019, 220, 20-33.	1.8	144
8	Atmospheric wet deposition of trace elements to central Tibetan Plateau. Applied Geochemistry, 2010, 25, 1415-1421.	1.4	143
9	The geochemistry of rare earth elements (REE) in acid mine drainage from the Sitai coal mine, Shanxi Province, North China. International Journal of Coal Geology, 2007, 70, 184-192.	1.9	137
10	Review of brown carbon aerosols: Recent progress and perspectives. Science of the Total Environment, 2018, 634, 1475-1485.	3.9	137
11	Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. National Science Review, 2020, 7, 492-495.	4.6	128
12	Historical Trends of Atmospheric Black Carbon on Tibetan Plateau As Reconstructed from a 150-Year Lake Sediment Record. Environmental Science & Technology, 2013, 47, 2579-2586.	4.6	123
13	The Campaign on Atmospheric Aerosol Research Network of China: CARE-China. Bulletin of the American Meteorological Society, 2015, 96, 1137-1155.	1.7	115
14	Water-Soluble Brown Carbon in Atmospheric Aerosols from Godavari (Nepal), a Regional Representative of South Asia. Environmental Science & Technology, 2019, 53, 3471-3479.	4.6	115
15	Lightâ€ e bsorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6915-6933.	1.2	114
16	Baseline continental aerosol over the central Tibetan plateau and a case study of aerosol transport from South Asia. Atmospheric Environment, 2011, 45, 7370-7378.	1.9	112
17	Gradient distribution of persistent organic contaminants along northern slope of central-Himalayas, China. Science of the Total Environment, 2006, 372, 193-202.	3.9	101
18	Elemental and individual particle analysis of atmospheric aerosols from high Himalayas. Environmental Monitoring and Assessment, 2010, 160, 323-335.	1.3	100

#	Article	IF	CITATIONS
19	Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects. Climate Dynamics, 2015, 45, 2831-2846.	1.7	95
20	Aerosol optical properties at Nam Co, a remote site in central Tibetan Plateau. Atmospheric Research, 2009, 92, 42-48.	1.8	93
21	Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmospheric Chemistry and Physics, 2017, 17, 8867-8885.	1.9	91
22	Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere, 2018, 12, 413-431.	1.5	89
23	Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. Atmospheric Environment, 2007, 41, 7208-7218.	1.9	87
24	Trace elements and lead isotopic composition of PM10 in Lhasa, Tibet. Atmospheric Environment, 2011, 45, 6210-6215.	1.9	82
25	Humic-Like Substances (HULIS) in Aerosols of Central Tibetan Plateau (Nam Co, 4730 m asl): Abundance, Light Absorption Properties, and Sources. Environmental Science & Technology, 2018, 52, 7203-7211.	4.6	78
26	Wet precipitation chemistry at a high-altitude site (3,326Âm a.s.l.) in the southeastern Tibetan Plateau. Environmental Science and Pollution Research, 2013, 20, 5013-5027.	2.7	75
27	Size distribution of carbonaceous aerosols at a high-altitude site on the central Tibetan Plateau (Nam) Tj ETQq1	1 0,78431 1.8	l 4 rgBT /Ove
28	Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects. Environmental Pollution, 2019, 248, 191-208.	3.7	71
29	Seasonal variation of secondary organic aerosol tracers in Central Tibetan Plateau. Atmospheric Chemistry and Physics, 2015, 15, 8781-8793.	1.9	68
30	Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau. Nature Climate Change, 2020, 10, 1037-1044.	8.1	68
31	Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environmental Pollution, 2019, 253, 49-60.	3.7	64
32	Surface ozone at Nam Co in the inland Tibetan Plateau: variation, synthesis comparison and regional representativeness. Atmospheric Chemistry and Physics, 2017, 17, 11293-11311.	1.9	63
33	Chemical characteristics of soluble aerosols over the central Himalayas: insights into spatiotemporal variations and sources. Environmental Science and Pollution Research, 2017, 24, 24454-24472.	2.7	62
34	Distribution of Persistent Organic Pollutants in Soil and Grasses Around Mt. Qomolangma, China. Archives of Environmental Contamination and Toxicology, 2007, 52, 153-162.	2.1	61
35	Distribution of PCBs and PBDEs in soils along the altitudinal gradients of Balang Mountain, the east edge of the Tibetan Plateau. Environmental Pollution, 2012, 161, 101-106.	3.7	61
36	Concentration, temporal variation, and sources of black carbon in the Mt. Everest region retrieved by real-time observation and simulation. Atmospheric Chemistry and Physics, 2018, 18, 12859-12875.	1.9	61

#	Article	IF	CITATIONS
37	Aerosol optical depth climatology over Central Asian countries based on Aqua-MODIS Collection 6.1 data: Aerosol variations and sources. Atmospheric Environment, 2019, 207, 205-214.	1.9	58
38	Individual Particle Analysis of Atmospheric Aerosols at Nam Co, Tibetan Plateau. Aerosol and Air Quality Research, 2009, 9, 323-331.	0.9	57
39	Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosolâ~†. Environmental Pollution, 2021, 268, 115906.	3.7	49
40	Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990–2009 using a regional climate model. Atmospheric Research, 2016, 178-179, 484-496.	1.8	48
41	The observationâ€based relationships between PM _{2.5} and AOD over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,701.	1.2	47
42	The first validation of the precipitable water vapor of multisensor satellites over the typical regions in China. Remote Sensing of Environment, 2018, 206, 107-122.	4.6	45
43	Light absorption, fluorescence properties and sources of brown carbon aerosols in the Southeast Tibetan Plateau. Environmental Pollution, 2020, 257, 113616.	3.7	45
44	Atmospheric Aerosol Elements over the Inland Tibetan Plateau: Concentration, Seasonality, and Transport. Aerosol and Air Quality Research, 2016, 16, 789-800.	0.9	44
45	Identification of absorbing aerosol types at a site in the northern edge of Indo-Gangetic Plain and a polluted valley in the foothills of the central Himalayas. Atmospheric Research, 2019, 223, 15-23.	1.8	44
46	Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet. Atmospheric Research, 2010, 96, 553-559.	1.8	43
47	Molecular characterization of organic aerosols in the Kathmandu Valley, Nepal: insights into primary and secondary sources. Atmospheric Chemistry and Physics, 2019, 19, 2725-2747.	1.9	41
48	Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading. Atmospheric Chemistry and Physics, 2017, 17, 449-463.	1.9	40
49	New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications. Environmental Science and Pollution Research, 2015, 22, 2735-2744.	2.7	39
50	Trophic Dilution of Short-Chain Chlorinated Paraffins in a Plant–Plateau Pika–Eagle Food Chain from the Tibetan Plateau. Environmental Science & Technology, 2019, 53, 9472-9480.	4.6	39
51	Historical Black Carbon Reconstruction from the Lake Sediments of the Himalayan–Tibetan Plateau. Environmental Science & Technology, 2019, 53, 5641-5651.	4.6	39
52	Concentration level and distribution of polycyclic aromatic hydrocarbons in soil and grass around Mt. Qomolangma, China. Science Bulletin, 2007, 52, 1405-1413.	1.7	38
53	Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. Science of the Total Environment, 2017, 607-608, 1237-1249.	3.9	38
54	Aerosol Properties Over Tibetan Plateau From a Decade of AERONET Measurements: Baseline, Types, and Influencing Factors. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13357-13374.	1.2	37

Zhiyuan Cong

#	Article	IF	CITATIONS
55	Trophic Magnification of Short-Chain Per- and Polyfluoroalkyl Substances in a Terrestrial Food Chain from the Tibetan Plateau. Environmental Science and Technology Letters, 2022, 9, 147-152.	3.9	37
56	Similarities and differences of aerosol optical properties between southern and northern sides of the Himalayas. Atmospheric Chemistry and Physics, 2014, 14, 3133-3149.	1.9	36
57	Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmospheric Chemistry and Physics, 2019, 19, 14637-14656.	1.9	36
58	Total suspended particulate matter and toxic elements indoors during cooking with yak dung. Atmospheric Environment, 2009, 43, 4243-4246.	1.9	35
59	Wet deposition of precipitation chemistry during 2005–2009 at a remote site (Nam Co Station) in central Tibetan Plateau. Journal of Atmospheric Chemistry, 2012, 69, 187-200.	1.4	35
60	Atmospheric particulate mercury in Lhasa city, Tibetan Plateau. Atmospheric Environment, 2016, 142, 433-441.	1.9	34
61	The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau. Environmental Pollution, 2017, 220, 936-945.	3.7	34
62	Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau. Atmospheric Research, 2016, 174-175, 142-150.	1.8	33
63	Aerosol characteristics at the three poles of the Earth as characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations. Atmospheric Chemistry and Physics, 2021, 21, 4849-4868.	1.9	33
64	Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review. Environmental Pollution, 2019, 247, 216-228.	3.7	32
65	Observation of optical properties and sources of aerosols at Buddha's birthplace, Lumbini, Nepal: environmental implications. Environmental Science and Pollution Research, 2018, 25, 14868-14881.	2.7	31
66	Air Pollution in the Hindu Kush Himalaya. , 2019, , 339-387.		31
67	Seasonal features of aerosol particles recorded in snow from Mt. Qomolangma (Everest) and their environmental implications. Journal of Environmental Sciences, 2009, 21, 914-919.	3.2	30
68	Loss and Increase of the Electron Exchange Capacity of Natural Organic Matter during Its Reduction and Reoxidation: The Role of Quinone and Nonquinone Moieties. Environmental Science & Technology, 2022, 56, 6744-6753.	4.6	30
69	Elemental composition of aerosols collected in the glacier area on Nyainqêntanglha Range, Tibetan Plateau, during summer monsoon season. Science Bulletin, 2007, 52, 3436-3442.	1.7	29
70	A 500year atmospheric dust deposition retrieved from a Mt. Geladaindong ice core in the central Tibetan Plateau. Atmospheric Research, 2015, 166, 1-9.	1.8	29
71	Evidence for Large Amounts of Brown Carbonaceous Tarballs in the Himalayan Atmosphere. Environmental Science and Technology Letters, 2021, 8, 16-23.	3.9	29
72	Nitrogen Speciation and Isotopic Composition of Aerosols Collected at Himalayan Forest (3326 m) Tj ETQq0 0 () rgBT /Ove 4.6	erlock 10 Tf 50 27

72 12247-12256.

5

#	Article	IF	CITATIONS
73	Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication. Atmospheric Chemistry and Physics, 2020, 20, 5923-5943.	1.9	25
74	Black carbon and organic carbon dataset over the Third Pole. Earth System Science Data, 2022, 14, 683-707.	3.7	25
75	Melting glaciers: Hidden hazards. Science, 2017, 356, 495-495.	6.0	24
76	Accumulation of Atmospheric Mercury in Glacier Cryoconite over Western China. Environmental Science & Technology, 2019, 53, 6632-6639.	4.6	23
77	Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet. Science of the Total Environment, 2016, 566-567, 1215-1222.	3.9	21
78	Low-molecular-weight organic acids in the Tibetan Plateau: Results from one-year of precipitation samples at the SET station. Atmospheric Environment, 2014, 86, 68-73.	1.9	20
79	Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environmental Science and Pollution Research, 2015, 22, 12490-12500.	2.7	20
80	Tracing the Transboundary Transport of Mercury to the Tibetan Plateau Using Atmospheric Mercury Isotopes. Environmental Science & Technology, 2022, 56, 1568-1577.	4.6	19
81	Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: abundance, speciation and implications. Cryosphere, 2018, 12, 3177-3186.	1.5	18
82	Elemental composition in surface snow from the ultra-high elevation area of Mt. Qomolangma (Everest). Science Bulletin, 2008, 53, 289-294.	1.7	17
83	Estimation of background concentration of PM in Beijing using a statistical integrated approach. Atmospheric Pollution Research, 2019, 10, 858-867.	1.8	17
84	In Situ Observations of Lightâ€Absorbing Carbonaceous Aerosols at Himalaya: Analysis of the South Asian Sources and Transâ€Himalayan Valleys Transport Pathways. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032615.	1.2	17
85	Formation Mechanisms and Source Apportionments of Airborne Nitrate Aerosols at a Himalayan-Tibetan Plateau Site: Insights from Nitrogen and Oxygen Isotopic Compositions. Environmental Science & Technology, 2021, 55, 12261-12271.	4.6	17
86	A new isolation method for biomass-burning tracers in snow: Measurements of p -hydroxybenzoic, vanillic, and dehydroabietic acids. Atmospheric Environment, 2015, 122, 142-147.	1.9	16
87	Analysis of a broad range of perfluoroalkyl acids in accipiter feathers: method optimization and their occurrence in Nam Co Basin, Tibetan Plateau. Environmental Geochemistry and Health, 2018, 40, 1877-1886.	1.8	15
88	The transboundary transport of air pollutants and their environmental impacts on Tibetan Plateau. Chinese Science Bulletin, 2019, 64, 2876-2884.	0.4	14
89	Estimating representative background PM2.5 concentration in heavily polluted areas using baseline separation technique and chemical mass balance model. Atmospheric Environment, 2018, 174, 180-187.	1.9	13
90	Mercury speciation and distribution in a glacierized mountain environment and their relevance to environmental risks in the inland Tibetan Plateau. Science of the Total Environment, 2018, 631-632, 270-278.	3.9	13

#	Article	IF	CITATIONS
91	Impacts of Indian summer monsoon and stratospheric intrusion on air pollutants in the inland Tibetan Plateau. Geoscience Frontiers, 2021, 12, 101255.	4.3	13
92	Quantifying Light Absorption of Iron Oxides and Carbonaceous Aerosol in Seasonal Snow across Northern China. Atmosphere, 2017, 8, 63.	1.0	12
93	Mercury variation and export in trans-Himalayan rivers: Insights from field observations in the Koshi River. Science of the Total Environment, 2020, 738, 139836.	3.9	12
94	Vertical profile of aerosols in the Himalayas revealed by lidar: New insights into their seasonal/diurnal patterns, sources, and transport. Environmental Pollution, 2021, 285, 117686.	3.7	11
95	Sulfur aerosols in the Arctic, Antarctic, and Tibetan Plateau: Current knowledge and future perspectives. Earth-Science Reviews, 2021, 220, 103753.	4.0	9
96	Seasonal and spatial variability of microparticles in snowpits on the Tibetan Plateau, China. Journal of Mountain Science, 2010, 7, 15-25.	0.8	8
97	Developing an analytical method for free amino acids in atmospheric precipitation using gas chromatography coupled with mass spectrometry. Atmospheric Research, 2021, 256, 105579.	1.8	8
98	The Leaching Behavior of Cadmium, Arsenic, Zinc, and Chlorine in Coal and Its Ash from Coal-Fired Power Plant. Environmental Engineering Science, 2006, 23, 68-76.	0.8	7
99	Biomass-burning derived aromatic acids in NIST standard reference material 1649b and the environmental implications. Atmospheric Environment, 2018, 185, 180-185.	1.9	7
100	Understanding Mercury Cycling in Tibetan Glacierized Mountain Environment: Recent Progress and Remaining Gaps. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 672-678.	1.3	7
101	Sulfur Isotope Anomalies (Δ ³³ S) in Urban Air Pollution Linked to Mineral-Dust-Associated Sulfate. Environmental Science and Technology Letters, 2022, 9, 604-610.	3.9	6
102	Priorities for the sustainable development of the ecological environment on the Tibetan Plateau. Fundamental Research, 2021, 1, 329-333.	1.6	4
103	14C characteristics of organic carbon in the atmosphere and at glacier region of the Tibetan Plateau. Science of the Total Environment, 2022, 832, 155020.	3.9	4
104	Concentration and seasonal variation of 10Be in surface aerosols of Lhasa, Tibet. Science Bulletin, 2010, 55, 2572-2578.	1.7	2
105	Chemical components and distributions of aerosols in the Third Pole. , 2020, , 43-67.		2
106	STUDY OF AEROSOL OPTICAL PROPERTIES OVER TWO SITES IN THE FOOTHILLS OF THE CENTRAL HIMALAYAS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 1493-1497.	0.2	1
107	Iceâ€Nucleating Particle Concentrations and Sources in Rainwater Over the Third Pole, Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033864.	1.2	0
108	Microscale spatial variability of snowpack: isotopic and chemical heterogeneity of a firn pack at Qomolangma (Mount Everest), central Himalaya. Annals of Glaciology, 2008, 49, 173-178.	2.8	0