Jonathan Burnett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6005904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decoherence benchmarking of superconducting qubits. Npj Quantum Information, 2019, 5, .	6.7	181
2	High Kinetic Inductance <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mrow><mml:mi>Nb</mml:mi><mml:mi mathvariant="normal">N</mml:mi </mml:mrow></mml:math> Nanowire Superinductors. Physical Review Applied, 2019, 11, .	3.8	79
3	Two-level systems in superconducting quantum devices due to trapped quasiparticles. Science Advances, 2020, 6, .	10.3	44
4	Analysis of high quality superconducting resonators: consequences for TLS properties in amorphous oxides. Superconductor Science and Technology, 2016, 29, 044008.	3.5	38
5	Noise and loss of superconducting aluminium resonators at single photon energies. Journal of Physics: Conference Series, 2018, 969, 012131.	0.4	29
6	High quality three-dimensional aluminum microwave cavities. Applied Physics Letters, 2020, 117, .	3.3	27
7	Geometric scaling of two-level-system loss in superconducting resonators. Superconductor Science and Technology, 2020, 33, 025013.	3.5	25
8	Phononic loss in superconducting resonators on piezoelectric substrates. New Journal of Physics, 2020, 22, 053027.	2.9	21
9	Characterizing decoherence rates of a superconducting qubit by direct microwave scattering. Npj Quantum Information, 2021, 7, .	6.7	20
10	Stability of superconducting resonators: Motional narrowing and the role of Landau-Zener driving of two-level defects. Science Advances, 2021, 7, eabh0462.	10.3	10
11	Quantum efficiency, purity and stability of a tunable, narrowband microwave single-photon source. Noi Quantum Information, 2021, 7	6.7	7