Luc Doucet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6004622/publications.pdf Version: 2024-02-01

LUC DOUCET

#	Article	IF	CITATIONS
1	Pitfalls in using the geochronological information from the EarthChem Portal for Precambrian time-series analysis. Precambrian Research, 2022, 369, 106514.	2.7	10
2	Has the impact flux of small and large asteroids varied through time on Mars, the Earth and the Moon?. Earth and Planetary Science Letters, 2022, 579, 117362.	4.4	5
3	Fe isotopic evidence that "high pressure―TTGs formed at low pressure. Earth and Planetary Science Letters, 2022, 592, 117645.	4.4	11
4	Early crustal processes revealed by the ejection site of the oldest martian meteorite. Nature Communications, 2022, 13, .	12.8	11
5	Pannotia: in defence of its existence and geodynamic significance. Geological Society Special Publication, 2021, 503, 13-39.	1.3	34
6	The largest plagiogranite on Earth formed by re-melting of juvenile proto-continental crust. Communications Earth & Environment, 2021, 2, .	6.8	17
7	Two-stage crustal growth in the Arabian-Nubian shield: Initial arc accretion followed by plume-induced crustal reworking. Precambrian Research, 2021, 359, 106211.	2.7	10
8	Oceanic and super-deep continental diamonds share a transition zone origin and mantle plume transportation. Scientific Reports, 2021, 11, 16958.	3.3	7
9	The Tharsis mantle source of depleted shergottites revealed by 90 million impact craters. Nature Communications, 2021, 12, 6352.	12.8	31
10	Coupled supercontinent–mantle plume events evidenced by oceanic plume record. Geology, 2020, 48, 159-163.	4.4	42
11	TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia. Earth and Planetary Science Letters, 2020, 550, 116548.	4.4	45
12	Decoupled water and iron enrichments in the cratonic mantle: A study on peridotite xenoliths from Tok, SE Siberian Craton. American Mineralogist, 2020, 105, 803-819.	1.9	4
13	Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics. Scientific Reports, 2020, 10, 9461.	3.3	27
14	Archean lithospheric differentiation: Insights from Fe and Zn isotopes. Geology, 2020, 48, 1028-1032.	4.4	22
15	Distinct formation history for deep-mantle domains reflected in geochemical differences. Nature Geoscience, 2020, 13, 511-515.	12.9	42
16	Innovative two-step isolation of Ni prior to stable isotope ratio measurements by MC-ICP-MS: application to igneous geological reference materials. Journal of Analytical Atomic Spectrometry, 2020, 35, 2213-2223.	3.0	8
17	Timing and causes of the mid-Cretaceous global plate reorganization event. Earth and Planetary Science Letters, 2020, 534, 116071.	4.4	22
18	Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling. Earth-Science Reviews, 2020, 205, 103174.	9.1	44

Luc Doucet

#	Article	IF	CITATIONS
19	Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nature Communications, 2019, 10, 5103.	12.8	42
20	Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle. Nature Communications, 2019, 10, 5270.	12.8	26
21	Lost in interpretation: Facts and misconceptions about the mantle of the Siberian craton. A comment on: "Composition of the lithospheric mantle in the northern part of Siberian craton: Constraints from peridotites in the Obnazhennaya kimberlite―by. Lithos, 2018, 314-315, 683-687.	1.4	2
22	Reworking of Archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: Evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite. Geochimica Et Cosmochimica Acta, 2018, 224, 132-153.	3.9	58
23	Zn isotope heterogeneity in the continental lithosphere: New evidence from Archean granitoids of the northern Kaapvaal craton, South Africa. Chemical Geology, 2018, 476, 260-271.	3.3	28
24	Ultra-refractory mantle within oceanic plateau: Petrology of the spinel harzburgites from Lac MichÃ le, Kerguelen Archipelago. Lithos, 2017, 272-273, 336-349.	1.4	7
25	Links between deformation, chemical enrichments and Li-isotope compositions in the lithospheric mantle of the central Siberian craton. Chemical Geology, 2017, 475, 105-121.	3.3	26
26	Olivine inclusions in Siberian diamonds and mantle xenoliths: Contrasting water and trace-element contents. Lithos, 2016, 265, 31-41.	1.4	26
27	Zn isotopic heterogeneity in the mantle: A melting control?. Earth and Planetary Science Letters, 2016, 451, 232-240.	4.4	73
28	Paleoproterozoic formation age for the Siberian cratonic mantle: Hf and Nd isotope data on refractory peridotite xenoliths from the Udachnaya kimberlite. Chemical Geology, 2015, 391, 42-55.	3.3	41
29	The age and history of the lithospheric mantle of the Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Obnazhennaya kimberlite. Earth and Planetary Science Letters, 2015, 428, 108-119.	4.4	54
30	Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochimica Et Cosmochimica Acta, 2015, 165, 466-483.	3.9	62
31	High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths. Geochimica Et Cosmochimica Acta, 2014, 137, 159-187.	3.9	126
32	The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contributions To Mineralogy and Petrology, 2013, 165, 1225-1242.	3.1	91
33	Thermal state, oxygen fugacity and Cî—,Oî—,H fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth and Planetary Science Letters, 2012, 357-358, 99-110.	4.4	97
34	Depth, degrees and tectonic settings of mantle melting during craton formation: inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth and Planetary Science Letters, 2012, 359-360, 206-218.	4.4	70
35	Three-Dimensional Imaging of Sulfides in Silicate Rocks at Submicron Resolution with Multiphoton Microscopy. Microscopy and Microanalysis, 2011, 17, 937-943.	0.4	8
36	Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth and Planetary Science Letters, 2011, 304, 71-84.	4.4	36

#	Article	IF	CITATIONS
37	Composition of the Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. Journal of Petrology, 2010, 51, 2177-2210.	2.8	177