Martins Zubkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6004573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive study of structure and properties of nanocrystalline zinc peroxide. Journal of Physics and Chemistry of Solids, 2022, 160, 110318.	1.9	6
2	Unraveling the Structure and Properties of Layered and Mixed ReO ₃ –WO ₃ Thin Films Deposited by Reactive DC Magnetron Sputtering. ACS Omega, 2022, 7, 1827-1837.	1.6	3
3	Bioâ€Inspired Macromolecular Ordering of Elastomers for Enhanced Contact Electrification and Triboelectric Energy Harvesting. Advanced Materials Technologies, 2022, 7, .	3.0	7
4	Optical properties of oxygen-containing yttrium hydride thin films during and after the deposition. Vacuum, 2022, 203, 111218.	1.6	7
5	Tailoring of rhenium oxidation state in ReOx thin films during reactive HiPIMS deposition process and following annealing. Materials Chemistry and Physics, 2022, 289, 126399.	2.0	1
6	The local atomic structure and thermoelectric properties of Ir-doped ZnO: hybrid DFT calculations and XAS experiments. Journal of Materials Chemistry C, 2021, 9, 4948-4960.	2.7	7
7	Tribovoltaic Device Based on the W/WO ₃ Schottky Junction Operating through Hot Carrier Extraction. Journal of Physical Chemistry C, 2021, 125, 14212-14220.	1.5	14
8	Understanding the Conversion Process of Magnetron-Deposited Thin Films of Amorphous ReO _{<i>x</i>} to Crystalline ReO ₃ upon Thermal Annealing. Crystal Growth and Design, 2020, 20, 6147-6156.	1.4	3
9	Amorphous ultra-wide bandgap ZnO <i>x</i> thin films deposited at cryogenic temperatures. Journal of Applied Physics, 2020, 128, .	1.1	14
10	Optical properties of zinc-iridium oxide thin films. IOP Conference Series: Materials Science and Engineering, 2019, 503, 012016.	0.3	0
11	Structure and Doping Determined Thermoelectric Properties of Bi ₂ Se ₃ Thin Films Deposited by Vapour–Solid Technique. IEEE Nanotechnology Magazine, 2019, 18, 948-954.	1.1	24
12	High power impulse magnetron sputtering of Zn/Al target in an Ar and Ar/O2 atmosphere: The study of sputtering process and AZO films. Surface and Coatings Technology, 2019, 369, 156-164.	2.2	12
13	Structure-determined thermoelectric properties of Bi2Se3 thin films deposited by vapour-solid technique. , 2018, , .		3
14	A comparative study of heterostructured CuO/CuWO4 nanowires and thin films. Journal of Crystal Growth, 2017, 480, 78-84.	0.7	17
15	Changes in structure and conduction type upon addition of Ir to ZnO thin films. Thin Solid Films, 2017, 636, 694-701.	0.8	10
16	Photo-electrical and transport properties of hydrothermal ZnO. Journal of Applied Physics, 2016, 119, .	1.1	7
17	Preparation and Characterization of Tin Tungstate Thin Films. Ferroelectrics, 2015, 484, 49-54.	0.3	8
18	Raman, electron microscopy and electrical transport studies of x-ray amorphous Zn-Ir-O thin films deposited by reactive DC magnetron sputtering. IOP Conference Series: Materials Science and Engineering, 2015, 77, 012035	0.3	4

#	Article	IF	CITATIONS
19	Structural, electrical and optical properties of zinc-iridium oxide thin films deposited by DC reactive magnetron sputtering. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1493-1496.	0.8	6
20	Structural, electrical and optical characteristics of Al-doped zinc oxide thin films deposited by reactive magnetron sputtering. IOP Conference Series: Materials Science and Engineering, 2013, 49, 012057.	0.3	5
21	Enhanced Reflectivity Change and Phase Shift of Polarized Light: Double Parameter Multilayer Sensor. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100424.	0.8	1
22	Amorphous pâ€Type Conducting Zn– x Ir Oxide (x  > 0.13) Thin Films Deposited by Reactive Magnetr Cosputtering. Physica Status Solidi (B): Basic Research, 0, , 2100374.	on 0.7	1