
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6003959/publications.pdf

Version: 2024-02-01

YEW MUN HUNC

#	Article	IF	CITATIONS
1	Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels. International Journal of Heat and Mass Transfer, 2015, 81, 862-877.	2.5	112
2	Entropy generation of viscous dissipative nanofluid flow in microchannels. International Journal of Heat and Mass Transfer, 2012, 55, 4169-4182.	2.5	70
3	Viscous dissipation effects of power-law fluid flow within parallel plates with constant heat fluxes. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 625-630.	1.0	68
4	Effects of geometric design on thermal performance of star-groove micro-heat pipes. International Journal of Heat and Mass Transfer, 2011, 54, 1198-1209.	2.5	62
5	Entropy generation of viscous dissipative nanofluid convection in asymmetrically heated porous microchannels with solid-phase heat generation. Energy Conversion and Management, 2015, 105, 731-745.	4.4	59
6	Nucleate pool boiling enhancement by ultrafast water permeation in graphene-nanostructure. International Communications in Heat and Mass Transfer, 2019, 101, 26-34.	2.9	54
7	Viscous dissipation effect on entropy generation for non-Newtonian fluids in microchannels. International Communications in Heat and Mass Transfer, 2008, 35, 1125-1129.	2.9	53
8	Performance evaluation of twisted-tape insert induced swirl flow in a laminar thermally developing heat exchanger. Applied Thermal Engineering, 2017, 121, 652-661.	3.0	53
9	Experimental investigation on the thermal performance and optimization of heat sink with U-shape heat pipes. Energy Conversion and Management, 2010, 51, 2109-2116.	4.4	43
10	Analytical Study on Forced Convection of Nanofluids With Viscous Dissipation in Microchannels. Heat Transfer Engineering, 2010, 31, 1184-1192.	1.2	43
11	Entropy generation of nanofluid flow with streamwise conduction inÂmicrochannels. Energy, 2014, 64, 979-990.	4.5	41
12	Viscous dissipative forced convection in thermal non-equilibrium nanofluid-saturated porous media embedded in microchannels. International Communications in Heat and Mass Transfer, 2014, 57, 309-318.	2.9	41
13	Nozzleless spray cooling using surface acoustic waves. Journal of Aerosol Science, 2015, 79, 48-60.	1.8	39
14	Effects of viscous dissipation on fully developed forced convection in porous media. International Communications in Heat and Mass Transfer, 2009, 36, 597-603.	2.9	38
15	Effects of streamwise conduction on thermal performance of nanofluid flow in microchannel heat sinks. Energy Conversion and Management, 2014, 78, 14-23.	4.4	38
16	Field-synergy analysis of viscous dissipative nanofluid flow in microchannels. International Journal of Heat and Mass Transfer, 2014, 73, 483-491.	2.5	38
17	Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition. Scientific Reports, 2015, 5, 11896.	1.6	36
18	Suppression of the Leidenfrost effect via low frequency vibrations. Soft Matter, 2015, 11, 775-784.	1.2	36

#	Article	IF	CITATIONS
19	Anomalously enhanced light-emitting diode cooling via nucleate boiling using graphene-nanoplatelets coatings. Energy Conversion and Management, 2021, 244, 114522.	4.4	36
20	Engineered superhydrophilicity and superhydrophobicity of graphene-nanoplatelet coatings via thermal treatment. Powder Technology, 2020, 364, 88-97.	2.1	34
21	Performance enhancement of graphene-coated micro heat pipes for light-emitting diode cooling. International Journal of Heat and Mass Transfer, 2020, 154, 119687.	2.5	34
22	Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers. Nanotechnology, 2017, 28, 164003.	1.3	33
23	The coupled effects of working fluid and solid wall on thermal performance of micro heat pipes. International Journal of Heat and Mass Transfer, 2014, 73, 76-87.	2.5	31
24	Coupled effects of hydrophobic layer and vibration on thermal efficiency of two-phase closed thermosyphons. RSC Advances, 2015, 5, 10332-10340.	1.7	31
25	Dielectric liquid pumping flow in optimally operated micro heat pipes. International Journal of Heat and Mass Transfer, 2017, 108, 257-270.	2.5	31
26	On the role of radiation view factor in thermal performance of straight-fin heat sinks. International Communications in Heat and Mass Transfer, 2010, 37, 1087-1095.	2.9	30
27	Temperature Variations of Forced Convection in Porous Media for Heating and Cooling Processes: Internal Heating Effect of Viscous Dissipation. Transport in Porous Media, 2008, 75, 319-332.	1.2	28
28	Thermal analysis of optimally designed inclined micro heat pipes with axial solid wall conduction. International Communications in Heat and Mass Transfer, 2012, 39, 1146-1153.	2.9	28
29	Ultrafast Water Permeation in Graphene Nanostructures Anomalously Enhances Twoâ€Phase Heat Transfer. Advanced Materials Interfaces, 2018, 5, 1800286.	1.9	28
30	Entropy generation analysis of turbulent convection in a heat exchanger with self-rotating turbulator inserts. International Journal of Thermal Sciences, 2021, 160, 106652.	2.6	28
31	Amplitude modulation schemes for enhancing acoustically-driven microcentrifugation and micromixing. Biomicrofluidics, 2016, 10, 054106.	1.2	26
32	Heat transfer on asymmetric thermal viscous dissipative Couette–Poiseuille flow of pseudo-plastic fluids. Journal of Non-Newtonian Fluid Mechanics, 2012, 169-170, 42-53.	1.0	24
33	Thermal performance enhancement and optimization of two-phase closed thermosyphon with graphene-nanoplatelets coatings. Energy Conversion and Management, 2021, 236, 114039.	4.4	24
34	Analysis of Microheat Pipes With Axial Conduction in the Solid Wall. Journal of Heat Transfer, 2010, 132, .	1.2	23
35	Field synergy principle analysis on fully developed forced convection in porous medium with uniform heat generation. International Communications in Heat and Mass Transfer, 2011, 38, 1247-1252.	2.9	21
36	Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks. Journal of Energy Resources Technology, Transactions of the ASME, 2016, 138, .	1.4	21

#	Article	IF	CITATIONS
37	Viscous dissipative nanofluid convection in asymmetrically heated porous microchannels with solid-phase heat generation. International Communications in Heat and Mass Transfer, 2015, 68, 236-247.	2.9	20
38	Graphene-mediated microfluidic transport and nebulization via high frequency Rayleigh wave substrate excitation. Lab on A Chip, 2016, 16, 3503-3514.	3.1	20
39	Lamb to Rayleigh Wave Conversion on Superstrates as a Means to Facilitate Disposable Acoustomicrofluidic Applications. Analytical Chemistry, 2019, 91, 12358-12368.	3.2	20
40	Anomalously enhanced thermal performance of carbon-nanotubes coated micro heat pipes. Energy, 2021, 214, 118909.	4.5	20
41	Thermal Analysis of a Water-Filled Micro Heat Pipe With Phase-Change Interfacial Resistance. Journal of Heat Transfer, 2012, 134, .	1.2	19
42	Acoustically-controlled Leidenfrost droplets. Journal of Colloid and Interface Science, 2016, 465, 26-32.	5.0	19
43	Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries. Energy, 2015, 89, 382-401.	4.5	18
44	Thermophysical phenomena of working fluids of thermocapillary convection in evaporating thin liquid films. International Communications in Heat and Mass Transfer, 2015, 66, 203-211.	2.9	16
45	Acoustially-mediated microfluidic nanofiltration through graphene films. Nanoscale, 2017, 9, 6497-6508.	2.8	16
46	Characterization and thrust measurements from electrolytic decomposition of ammonium dinitramide (ADN) based liquid monopropellant FLP-103 in MEMS thrusters. Chinese Journal of Chemical Engineering, 2018, 26, 1992-2002.	1.7	16
47	A comparative study of superhydrophobicity of 0D/1D/2D thermally functionalized carbon nanomaterials. Ceramics International, 2021, 47, 30331-30342.	2.3	16
48	Analysis of overloaded micro heat pipes: Effects of solid thermal conductivity. International Journal of Heat and Mass Transfer, 2015, 81, 737-749.	2.5	15
49	Phase change modulated thermal switch and enhanced performance enabled by graphene coating. RSC Advances, 2016, 6, 87159-87168.	1.7	15
50	Performance enhancement of subcooled flow boiling on graphene nanostructured surfaces with tunable wettability. Case Studies in Thermal Engineering, 2021, 27, 101283.	2.8	14
51	Extraordinarily enhanced evaporation of water droplets on graphene-nanostructured coated surfaces. International Journal of Heat and Mass Transfer, 2020, 163, 120396.	2.5	13
52	Acoustically enhanced heat transport. Review of Scientific Instruments, 2016, 87, 014902.	0.6	12
53	MOMENTUM INTEGRAL METHOD FOR FORCED CONVECTION IN THERMAL NONEQUILIBRIUM POWER-LAW FLUID-SATURATED POROUS MEDIA. Chemical Engineering Communications, 2013, 200, 269-288.	1.5	11
54	Acoustically Driven Micromixing: Effect of Transducer Geometry. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1387-1394.	1.7	11

#	Article	IF	CITATIONS
55	Influence of substrate on ultrafast water transport property of multilayer graphene coatings. Nanotechnology, 2020, 31, 375704.	1.3	11
56	Effective passive phase-change light-emitting diode cooling system using graphene nanoplatelets coatings. Case Studies in Thermal Engineering, 2022, 31, 101795.	2.8	11
57	Thermal analysis of Al ₂ O ₃ /water nanofluid-filled micro heat pipes. RSC Advances, 2015, 5, 26716-26725.	1.7	10
58	A hydrodynamic analysis of thermocapillary convection in evaporating thin liquid films. International Journal of Heat and Mass Transfer, 2017, 108, 1103-1114.	2.5	10
59	Enhancement of biogas/air combustion by hydrogen addition at elevated temperatures. International Journal of Energy Research, 2020, 44, 1519-1534.	2.2	10
60	Graphene-mediated suppression of Leidenfrost effect for droplets on an inclined surface. International Journal of Thermal Sciences, 2022, 174, 107426.	2.6	10
61	Thermocapillary flow in evaporating thin liquid films with long-wave evolution model. International Journal of Heat and Mass Transfer, 2014, 73, 849-858.	2.5	9
62	Graphene-mediated electrospray cooling for discrete heat sources in microslits. International Journal of Thermal Sciences, 2021, 164, 106882.	2.6	9
63	Distinctive evaporation characteristics of water and ethanol on graphene nanostructured surfaces. International Journal of Heat and Mass Transfer, 2022, 183, 122174.	2.5	9
64	Dryout analysis of overloaded microscale capillary-driven two-phase heat transfer devices. International Communications in Heat and Mass Transfer, 2016, 76, 162-170.	2.9	8
65	Electroosmotic flow in optimally operated micro heat pipes. International Journal of Heat and Mass Transfer, 2016, 103, 807-820.	2.5	8
66	Nonporous, Strong, Stretchable, and Transparent Electrospun Aromatic Polyurea Nanocomposites as Potential Anticorrosion Coating Films. Nanomaterials, 2021, 11, 2998.	1.9	8
67	Field synergy principle in forced convection of plane Couette–Poiseuille flows with effect of thermal asymmetry. International Communications in Heat and Mass Transfer, 2012, 39, 1181-1187.	2.9	7
68	A Hybrid Treatment via MHz Acoustic Waves and Plasma to Enhance Seed Germination in Mung Bean. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 1-1.	1.7	7
69	Anomalously enhanced thermal conductivity of graphite-oxide nanofluids synthesized via liquid-phase pulsed laser ablation. Case Studies in Thermal Engineering, 2021, 25, 100993.	2.8	7
70	On the role of inserts in forced convection heat transfer augmentation. International Communications in Heat and Mass Transfer, 2012, 39, 1138-1145.	2.9	6
71	Unified field synergy and heatline visualization of forced convection with thermal asymmetries. International Communications in Heat and Mass Transfer, 2014, 55, 29-37.	2.9	5
72	Nanofiltration Using Graphene-Epoxy Filter Media Actuated by Surface Acoustic Waves. Physical Review Applied, 2021, 15, .	1.5	5

#	Article	IF	CITATIONS
73	Efficient atomization of brine at atmospheric pressure. Journal of Aerosol Science, 2018, 122, 11-20.	1.8	4
74	Effect of multi-walled carbon nanotubes on pre-vaporized palm oil biodiesel/air premixed flames. Fuel Communications, 2021, 8, 100020.	2.0	4
75	Vibration isolation via Leidenfrost droplets. Journal of Micromechanics and Microengineering, 2019, 29, 085003.	1.5	3
76	Long-wave evolution model of thermocapillary convection in an evaporating thin film of pseudoplastic fluids. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4764-4787.	1.6	3
77	Analysis of streamwise conduction in forced convection of microchannels using fin approach. Journal of Zhejiang University: Science A, 2011, 12, 655-664.	1.3	2
78	Viscous Dissipation Effect on Entropy Generation of Nanofluid Flow in Microchannels. , 2013, , .		2
79	Gravitational effects on electroosmotic flow in micro heat pipes. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 535-556.	1.6	1
80	Inverse-thermocapillary evaporation in a thin liquid film of self-rewetting fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 1124-1143.	1.6	1
81	Circulation Effectiveness of Working Fluid in Inclined Micro Heat Pipes. Applied Mechanics and Materials, 0, 789-790, 422-425.	0.2	0
82	Suppression of Thermocapillary Effect in Evaporating Thin Film of Micro Heat Pipes. Advanced Materials Research, 0, 1101, 467-470.	0.3	0