Michael John Plank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6003305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of vaccination, border testing, and quarantine requirements on the risk of COVID-19 in New Zealand: A modelling study. Infectious Disease Modelling, 2022, 7, 184-198.	1.9	12
2	Speciesâ€rangeâ€size distributions: Integrating the effects of speciation, transformation, and extinction. Ecology and Evolution, 2022, 12, e8341.	1.9	3
3	Potential reduction in transmission of COVID-19 by digital contact tracing systems: a modelling study. Mathematical Medicine and Biology, 2022, 39, 156-168.	1.2	8
4	Comment on â€~Government mandated lockdowns do not reduce COVID-19 deaths: implications for evaluating the stringent New Zealand response'. New Zealand Economic Papers, 2022, 56, 29-35.	0.8	3
5	A COVID-19 vaccination model for Aotearoa New Zealand. Scientific Reports, 2022, 12, 2720.	3.3	25
6	A stochastic mathematical model of 4D tumour spheroids with real-time fluorescent cell cycle labelling. Journal of the Royal Society Interface, 2022, 19, 20210903.	3.4	17
7	An assessment of the potential impact of the Omicron variant of SARS-CoV-2 in Aotearoa New Zealand. Infectious Disease Modelling, 2022, 7, 94-105.	1.9	12
8	Cooperative and non-cooperative behaviour in the exploitation of a common renewable resource with environmental stochasticity. Applied Mathematical Modelling, 2021, 89, 1041-1054.	4.2	0
9	Individual heterogeneity affects the outcome of small mammal pest eradication. Theoretical Ecology, 2021, 14, 219-231.	1.0	2
10	Mathematical modelling to inform New Zealand's COVID-19 response. Journal of the Royal Society of New Zealand, 2021, 51, S86-S106.	1.9	19
11	Model-free estimation of COVID-19 transmission dynamics from a complete outbreak. PLoS ONE, 2021, 16, e0238800.	2.5	12
12	Managing the risk of a COVID-19 outbreak from border arrivals. Journal of the Royal Society Interface, 2021, 18, 20210063.	3.4	19
13	Comment: weekly COVID-19 testing with household quarantine and contact tracing is feasible and would probably end the epidemic. Royal Society Open Science, 2021, 8, 201546.	2.4	1
14	Worldwide border interceptions provide a window into humanâ€mediated global insect movement. Ecological Applications, 2021, 31, e02412.	3.8	53
15	Vaccination and testing of the border workforce for COVID-19 and risk of community outbreaks: a modelling study. Royal Society Open Science, 2021, 8, 210686.	2.4	4
16	Commentary: Fishing Without a Trace? Assessing the Balanced Harvest Approach Using EcoTroph. Frontiers in Marine Science, 2021, 7, .	2.5	3
17	Early intervention is the key to success in COVID-19 control. Royal Society Open Science, 2021, 8, 210488.	2.4	20
18	MÄori and Pacific people in New Zealand have a higher risk of hospitalisation for COVID-19. New Zealand Medical Journal, 2021, 134, 28-43.	0.5	7

#	Article	IF	CITATIONS
19	Asymptotic expansion approximation for spatial structure arising from directionally biased movement. Physica A: Statistical Mechanics and Its Applications, 2020, 541, 123290.	2.6	1
20	Kia kaua te reo e rite ki te moa, ka ngaro: do not let the language suffer the same fate as the moa. Journal of the Royal Society Interface, 2020, 17, 20190526.	3.4	6
21	Living in groups: Spatial-moment dynamics with neighbour-biased movements. Ecological Modelling, 2020, 415, 108825.	2.5	12
22	Population dynamics with spatial structure and an Allee effect. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200501.	2.1	13
23	Considering unseen arrivals in predictions of establishment risk based on border biosecurity interceptions. Ecological Applications, 2020, 30, e02194.	3.8	16
24	Small-scale spatial structure affects predator-prey dynamics and coexistence. Theoretical Ecology, 2020, 13, 537-550.	1.0	5
25	What unmanaged fishing patterns reveal about optimal management: applied to the balanced harvesting debate. ICES Journal of Marine Science, 2020, 77, 901-910.	2.5	6
26	Identifying density-dependent interactions in collective cell behaviour. Journal of the Royal Society Interface, 2020, 17, 20200143.	3.4	16
27	Small-scale spatial structure influences large-scale invasion rates. Theoretical Ecology, 2020, 13, 277-288.	1.0	5
28	Estimated inequities in COVID-19 infection fatality rates by ethnicity for Aotearoa New Zealand. New Zealand Medical Journal, 2020, 133, 28-39.	0.5	25
29	Balanced harvest: concept, policies, evidence, and management implications. Reviews in Fish Biology and Fisheries, 2019, 29, 711-733.	4.9	41
30	Spatial structure arising from chase-escape interactions with crowding. Scientific Reports, 2019, 9, 14988.	3.3	8
31	Using family network data in child protection services. PLoS ONE, 2019, 14, e0224554.	2.5	7
32	Emergence of balanced harvesting in an agent-based model of an open-access small-scale fishery. Mathematical Biosciences, 2019, 316, 108245.	1.9	4
33	Limiting Effect of Self-Shading on the Height of Tradescantia fluminensis Mats. Bulletin of Mathematical Biology, 2019, 81, 3918-3932.	1.9	Ο
34	The effects of cerebral curvature on cortical spreading depression. Journal of Theoretical Biology, 2019, 472, 11-26.	1.7	4
35	Gender and societies: a grassroots approach to women in science. Royal Society Open Science, 2019, 6, 190633.	2.4	33
36	Minimal model of calcium dynamics in two heterogeneous coupled cells. Neurocomputing, 2019, 323, 128-138.	5.9	1

#	Article	IF	CITATIONS
37	Integrated models of neurovascular coupling and BOLD signals: Responses for varying neural activations. NeuroImage, 2018, 174, 69-86.	4.2	25
38	Inferring fishing intensity from contemporary and archaeological size-frequency data. Journal of Archaeological Science, 2018, 93, 42-53.	2.4	6
39	The role of astrocytic calcium and TRPV4 channels in neurovascular coupling. Journal of Computational Neuroscience, 2018, 44, 97-114.	1.0	26
40	Massively parallel simulations of neurovascular coupling with extracellular diffusion. Journal of Computational Science, 2018, 24, 116-124.	2.9	6
41	Inferring parameters for a lattice-free model of cell migration and proliferation using experimental data. Journal of Theoretical Biology, 2018, 437, 251-260.	1.7	37
42	Effects of different dispersal patterns on the presence-absence of multiple species. Communications in Nonlinear Science and Numerical Simulation, 2018, 56, 115-130.	3.3	21
43	Macro scale modelling of cortical spreading depression and the role of astrocytic gap junctions. Journal of Theoretical Biology, 2018, 458, 78-91.	1.7	7
44	Capacity to support predators scales with habitat size. Science Advances, 2018, 4, eaap7523.	10.3	23
45	Spatial Moment Description of Birth–Death–Movement Processes Incorporating the Effects of Crowding and Obstacles. Bulletin of Mathematical Biology, 2018, 80, 2828-2855.	1.9	20
46	Balanced harvesting could reduce fisheriesâ€induced evolution. Fish and Fisheries, 2018, 19, 1078-1091.	5.3	24
47	How should fishing mortality be distributed under balanced harvesting?. Fisheries Research, 2018, 207, 171-174.	1.7	8
48	Importance of Altered Levels of SERCA, IP 3 R, and RyR in Vascular Smooth Muscle Cell. Biophysical Journal, 2017, 112, 265-287.	0.5	21
49	Effects of biotic interactions and dispersal on the presence-absence of multiple species. Chaos, Solitons and Fractals, 2017, 99, 185-194.	5.1	20
50	Unfinished synchrony. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 201707731.	7.1	2
51	Simplified calculation of diffusivity for a lattice-based random walk with a single obstacle. Results in Physics, 2017, 7, 3346-3348.	4.1	3
52	A model of neurovascular coupling and the BOLD response: PART I. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 508-518.	1.6	15
53	A model of neurovascular coupling and the BOLD response PART II. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 519-529.	1.6	11
54	Testing and recommending methods for fitting size spectra to data. Methods in Ecology and Evolution, 2017, 8, 57-67.	5.2	84

#	Article	IF	CITATIONS
55	Balanced harvesting is the bioeconomic equilibrium of a size-structured Beverton-Holt model. ICES Journal of Marine Science, 2017, 74, 112-120.	2.5	8
56	Balanced harvesting can emerge from fishing decisions by individual fishers in a smallâ€scale fishery. Fish and Fisheries, 2017, 18, 212-225.	5.3	24
57	Effects of dispersal and stochasticity on the presence–absence of multiple species. Ecological Modelling, 2016, 342, 49-59.	2.5	31
58	Evaluating random search strategies in three mammals from distinct feeding guilds. Journal of Animal Ecology, 2016, 85, 1411-1421.	2.8	27
59	Collective Cell Behaviour with Neighbour-Dependent Proliferation, Death and Directional Bias. Bulletin of Mathematical Biology, 2016, 78, 2277-2301.	1.9	30
60	Fisheries, the inverted food pyramid. ICES Journal of Marine Science, 2016, 73, 1697-1713.	2.5	54
61	Balanced exploitation and coexistence of interacting, sizeâ€structured, fish species. Fish and Fisheries, 2016, 17, 281-302.	5.3	51
62	The Nile perch invasion in Lake Victoria: cause or consequence of the haplochromine decline?. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 622-643.	1.4	38
63	Evolutionarily Stable Strategies for Fecundity and Swimming Speed of Fish. Bulletin of Mathematical Biology, 2016, 78, 280-292.	1.9	3
64	Lattice-free models of directed cell motility. Physica A: Statistical Mechanics and Its Applications, 2016, 442, 110-121.	2.6	9
65	Spatial structure arising from neighbour-dependent bias in collective cell movement. PeerJ, 2016, 4, e1689.	2.0	24
66	Differentiating the Lévy walk from a composite correlated random walk. Methods in Ecology and Evolution, 2015, 6, 1179-1189.	5.2	32
67	Information on Biotic Interactions Improves Transferability of Distribution Models. American Naturalist, 2015, 185, 281-290.	2.1	38
68	The effect of competition on species' distributions depends on coexistence, rather than scale alone. Ecography, 2015, 38, 1071-1079.	4.5	38
69	Spatial moment dynamics for collective cell movement incorporating a neighbour-dependent directional bias. Journal of the Royal Society Interface, 2015, 12, 20150228.	3.4	35
70	Constructing Random Matrices to Represent Real Ecosystems. American Naturalist, 2015, 185, 680-692.	2.1	31
71	Spatial Point Processes and Moment Dynamics in the Life Sciences: A Parsimonious Derivation and Some Extensions. Bulletin of Mathematical Biology, 2015, 77, 586-613.	1.9	33
72	Squaring the circle: reconciling fishing and conservation of aquatic ecosystems. Fish and Fisheries, 2015, 16, 160-174.	5.3	47

#	Article	IF	CITATIONS
73	Modelling <i>Tradescantia fluminensis</i> to assess long term survival. PeerJ, 2015, 3, e1013.	2.0	3
74	Distinguishing between Lévy walks and strong alternative models: comment. Ecology, 2014, 95, 1104-1109.	3.2	4
75	On the growth of locally interacting plants: differential equations for the dynamics of spatial moments. Ecology, 2013, 94, 2732-2743.	3.2	19
76	Lattice-Free Models of Cell Invasion: Discrete Simulations and Travelling Waves. Bulletin of Mathematical Biology, 2013, 75, 2150-2166.	1.9	13
77	Of mast and mean: differentialâ€ŧemperature cue makes mast seeding insensitive to climate change. Ecology Letters, 2013, 16, 90-98.	6.4	195
78	Lévy or Not? Analysing Positional Data from Animal Movement Paths. Lecture Notes in Mathematics, 2013, , 33-52.	0.2	19
79	Modeling Secondary Messenger Pathways in Neurovascular Coupling. Bulletin of Mathematical Biology, 2013, 75, 428-443.	1.9	11
80	James et al. reply. Nature, 2013, 500, E2-E3.	27.8	16
81	Lattice-free descriptions of collective motion with crowding and adhesion. Physical Review E, 2013, 88, 062720.	2.1	29
82	Models of collective cell behaviour with crowding effects: comparing lattice-based and lattice-free approaches. Journal of the Royal Society Interface, 2012, 9, 2983-2996.	3.4	62
83	EPIDEMIC DYNAMICS ON RANDOM AND SCALE-FREE NETWORKS. ANZIAM Journal, 2012, 54, 3-22.	0.2	7
84	On balanced exploitation of marine ecosystems: results from dynamic size spectra. ICES Journal of Marine Science, 2012, 69, 602-614.	2.5	102
85	Taylor's law and body size in exploited marine ecosystems. Ecology and Evolution, 2012, 2, 3168-3178.	1.9	12
86	Habitat fragmentation: Simple models for local persistence and the spread of invasive species. Journal of Theoretical Biology, 2012, 310, 231-238.	1.7	8
87	Disentangling nestedness from models of ecological complexity. Nature, 2012, 487, 227-230.	27.8	195
88	Ecological drivers of stability and instability in marine ecosystems. Theoretical Ecology, 2012, 5, 465-480.	1.0	28
89	Sampling rate and misidentification of Lévy and non-Lévy movement paths: reply. Ecology, 2011, 92, 1701-1702.	3.2	8
90	A stability analysis of the power-law steady state of marine size spectra. Journal of Mathematical Biology, 2011, 63, 779-799.	1.9	32

#	Article	IF	CITATIONS
91	Turn designation, sampling rate and the misidentification of power laws in movement path data using maximum likelihood estimates. Theoretical Ecology, 2011, 4, 397-406.	1.0	37
92	Group by subject or by ability? Tertiary mathematics for engineering students. International Journal of Mathematical Education in Science and Technology, 2011, 42, 857-865.	1.4	2
93	EFFECTS OF PREDATOR DIET BREADTH ON STABILITY OF SIZE SPECTRA. ANZIAM Journal, 2011, 53, 38-47.	0.2	0
94	A mathematical framework for modelling cambial surface evolution using a level set method. Annals of Botany, 2011, 108, 1001-1011.	2.9	9
95	Assessing Lévy walks as models of animal foraging. Journal of the Royal Society Interface, 2011, 8, 1233-1247.	3.4	139
96	Efficient or Inaccurate? Analytical and Numerical Modelling of Random Search Strategies. Bulletin of Mathematical Biology, 2010, 72, 896-913.	1.9	29
97	Sizeâ€spectra dynamics from stochastic predation and growth of individuals. Ecology, 2009, 90, 802-811.	3.2	98
98	Sampling rate and misidentification of Lévy and non-Lévy movement paths. Ecology, 2009, 90, 3546-3553.	3.2	78
99	Modelling the dynamic response of oxygen uptake to exercise. Discrete and Continuous Dynamical Systems - Series B, 2009, 12, 361-370.	0.9	1
100	Modelling biological invasions over homogeneous and inhomogeneous landscapes using level set methods. Biological Invasions, 2008, 10, 157-167.	2.4	4
101	Random walk models in biology. Journal of the Royal Society Interface, 2008, 5, 813-834.	3.4	1,101
102	Optimal foraging: Lévy pattern or process?. Journal of the Royal Society Interface, 2008, 5, 1077-1086.	3.4	107
103	Dynamic myogenic autoregulation in the rat kidney: a whole-organ model. American Journal of Physiology - Renal Physiology, 2008, 294, F1453-F1464.	2.7	23
104	Endothelial Nitric Oxide Synthase and Calcium Production in Arterial Geometries: An Integrated Fluid Mechanics/Cell Model. Journal of Biomechanical Engineering, 2008, 130, 011010.	1.3	39
105	Optimizing the encounter rate in biological interactions: Ballistic versus Lévy versus Brownian strategies. Physical Review E, 2008, 78, 051128.	2.1	67
106	An event-based model of superspreading in epidemics. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 741-747.	2.6	64
107	A nonlinear model of age and size-structured populations with applications to cell cycles. ANZIAM Journal, 2007, 49, 151-169.	0.2	13
108	The role of endothelial calcium and nitric oxide in the localisation of atherosclerosis. Mathematical Biosciences, 2007, 207, 26-39.	1.9	25

#	Article	IF	CITATIONS
109	A dynamical model of honeydew droplet production by sooty-beech scale insects (Ultracoelostoma) Tj ETQq1 1 ().784314 2.5	rg&T /Overloc
110	Modelling the Early Stages of Atherosclerosis. , 2007, , 263-274.		2
111	Concentration of blood-borne agonists at the endothelium. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 671-688.	2.1	9
112	Effects of Arterial Bifurcation Geometry on Nucleotide Concentration at the Endothelium. Annals of Biomedical Engineering, 2006, 34, 605-617.	2.5	11
113	Atherosclerosis and calcium signalling in endothelial cells. Progress in Biophysics and Molecular Biology, 2006, 91, 287-313.	2.9	67
114	A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. Journal of Theoretical Biology, 2004, 229, 435-454.	1.7	62
115	Lattice and non-lattice models of tumour angiogenesis. Bulletin of Mathematical Biology, 2004, 66, 1785-1819.	1.9	114
116	The Role of the Angiopoietins in Tumour Angiogenesis. Growth Factors, 2004, 22, 1-11.	1.7	32
117	Tumour-Induced Angiogenesis: A Review. Journal of Theoretical Medicine, 2003, 5, 137-153.	0.5	33
118	A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Mathematical Medicine and Biology, 2003, 20, 135-181.	1.2	100
119	A Mathematical Model of anIn VitroExperiment to Investigate Endothelial Cell Migration. Journal of Theoretical Medicine, 2002, 4, 251-270.	0.5	8
120	Exploring tradeâ€offs in mixed fisheries by integrating fleet dynamics into multispecies sizeâ€spectrum models. Journal of Applied Ecology, 0, , .	4.0	4