Joseph Lorent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6002553/publications.pdf

Version: 2024-02-01

713013 686830 1,614 31 13 21 citations h-index g-index papers 34 34 34 2190 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nature Chemical Biology, 2020, 16, 644-652.	3.9	414
2	Structural determinants and functional consequences of protein affinity for membrane rafts. Nature Communications, 2017, 8, 1219.	5.8	231
3	The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Organic and Biomolecular Chemistry, 2014, 12, 8803-8822.	1.5	172
4	Polyunsaturated Lipids Regulate Membrane Domain Stability by Tuning Membrane Order. Biophysical Journal, 2016, 110, 1800-1810.	0.2	155
5	Structural determinants of protein partitioning into ordered membrane domains and lipid rafts. Chemistry and Physics of Lipids, 2015, 192, 23-32.	1.5	136
6	ï‰-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis. Science Advances, 2017, 3, eaao1193.	4.7	105
7	Effects of surfactin on membrane models displaying lipid phase separation. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 801-815.	1.4	88
8	Mode of action of teixobactins in cellular membranes. Nature Communications, 2020, 11, 2848.	5.8	57
9	Induction of Highly Curved Structures in Relation to Membrane Permeabilization and Budding by the Triterpenoid Saponins, \hat{l}_{\pm} - and \hat{l} -Hederin. Journal of Biological Chemistry, 2013, 288, 14000-14017.	1.6	55
10	Domain Stability in Biomimetic Membranes Driven by Lipid Polyunsaturation. Journal of Physical Chemistry B, 2016, 120, 11930-11941.	1.2	52
11	Domain Formation and Permeabilization Induced by the Saponin α-Hederin and Its Aglycone Hederagenin in a Cholesterol-Containing Bilayer. Langmuir, 2014, 30, 4556-4569.	1.6	42
12	α-Hederin Induces Apoptosis, Membrane Permeabilization and Morphologic Changes in Two Cancer Cell Lines Through a Cholesterol-Dependent Mechanism. Planta Medica, 2016, 82, 1532-1539.	0.7	30
13	Myelin-Associated MAL and PLP Are Unusual among Multipass Transmembrane Proteins in Preferring Ordered Membrane Domains. Journal of Physical Chemistry B, 2020, 124, 5930-5939.	1.2	21
14	Shortening of membrane lipid acyl chains compensates for phosphatidylcholine deficiency in cholineâ€auxotroph yeast. EMBO Journal, 2021, 40, e107966.	3.5	12
15	Structural Modifications Controlling Membrane Raft Partitioning and Curvature in Human and Viral Proteins. Journal of Physical Chemistry B, 2020, 124, 7574-7585.	1.2	11
16	Lipid Membranes as Key Targets for the Pharmacological Actions of Ginsenosides. Frontiers in Pharmacology, 2020, 11, 576887.	1.6	10
17	Multifaceted Activities of Seven Nanobodies against Complement C4b. Journal of Immunology, 2022, 208, 2207-2219.	0.4	5
18	Structural Determinants and Functional Consequences of Protein Association with Membrane Domains. Biophysical Journal, 2018, 114, 380a.	0.2	2

#	Article	IF	CITATIONS
19	Structural Determinants of Raft Partitioning for Single-Pass Transmembrane Proteins. Biophysical Journal, 2016, 110, 205a.	0.2	1
20	The Action of Alpha Hederin, a Triperpenoid Saponin, on Membranes. Biophysical Journal, 2012, 102, 85a.	0.2	0
21	Elucidation of a Raft-Partitioning Motif in Transmembrane Proteins. Biophysical Journal, 2015, 108, 556a.	0.2	O
22	Dietary Fats Remodel Plasma Membrane Lipidome and Physical Properties to Regulate Phase Separation in Biological Membranes. Biophysical Journal, 2016, 110, 584a.	0.2	0
23	Order Differences between Coexisting Liquid Phases Driven by Lipid Unsaturation Determine Phase Separation in Biomimetic Membranes. Biophysical Journal, 2016, 110, 71a.	0.2	O
24	Oligomerization and Raft Partitioning Increase Plasma Membrane Localization of Transmembrane Proteins. Biophysical Journal, 2017, 112, 505a.	0.2	0
25	The Biophysical Asymmetry of Mammalian Plasma Membranes. Biophysical Journal, 2018, 114, 550a-551a.	0.2	O
26	Phosphatidylserine (PS) Externalization Facilitates Membrane Vesiculation through Decreasing Membrane Stiffness. Biophysical Journal, 2019, 116, 93a.	0.2	0
27	Pathways and Molecular Mechanisms of Microdomain-Dependent Membrane Trafficking. Biophysical Journal, 2019, 116, 218a-219a.	0.2	O
28	Lipid Phase Asymmetry in Mammalian Bilayer Membranes. Biophysical Journal, 2019, 116, 225a.	0.2	0
29	All Atom Simulations of the Inner and Outer Leaflet of the Erythrocyte Plasma Membrane. Biophysical Journal, 2019, 116, 89a.	0.2	0
30	Effects of Cold Atmospheric Plasmas on Membranes. Biophysical Journal, 2020, 118, 235a.	0.2	0
31	Plasma Membrane Packing Asymmetry Drives Transmembrane Protein Localization. Biophysical Journal, 2020, 118, 90a.	0.2	O