Aradhna Baburamani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6002442/publications.pdf

Version: 2024-02-01

32 papers 1,167 citations

18 h-index 395343 33 g-index

36 all docs 36 docs citations

36 times ranked 1865 citing authors

#	Article	IF	CITATIONS
1	Parallel transmit pulse design for saturation homogeneity (<scp>PUSH</scp>) for magnetization transfer imaging at <scp>7T</scp> . Magnetic Resonance in Medicine, 2022, 88, 180-194.	1.9	5
2	Brief hypoxia in late gestation sheep causes prolonged disruption of fetal electrographic, breathing behaviours and can result in early labour. Journal of Physiology, 2021, 599, 3221-3236.	1.3	5
3	Neurometabolite mapping highlights elevated myo-inositol profiles within the developing brain in down syndrome. Neurobiology of Disease, 2021, 153, 105316.	2.1	8
4	A community-led initiative for training in reproducible research. ELife, 2021, 10, .	2.8	10
5	White matter injury but not germinal matrix hemorrhage induces elevated osteopontin expression in human preterm brains. Acta Neuropathologica Communications, 2021, 9, 166.	2.4	5
6	Early alterations in cortical and cerebellar regional brain growth in Down Syndrome: An in vivo fetal and neonatal MRI assessment. NeuroImage: Clinical, 2020, 25, 102139.	1.4	41
7	Controlled saturation magnetization transfer for reproducible multivendor variable flip angle T ₁ and T ₂ mapping. Magnetic Resonance in Medicine, 2020, 84, 221-236.	1.9	20
8	Assessment of radial glia in the frontal lobe of fetuses with Down syndrome. Acta Neuropathologica Communications, 2020, 8, 141.	2.4	17
9	Complementing cooling: the ongoing search for an effective adjunct to therapeutic hypothermia. Journal of Physiology, 2020, 598, 905-906.	1.3	2
10	Interneuron Development Is Disrupted in Preterm Brains With Diffuse White Matter Injury: Observations in Mouse and Human. Frontiers in Physiology, 2019, 10, 955.	1.3	55
11	Dysmaturation of Somatostatin Interneurons Following Umbilical Cord Occlusion in Preterm Fetal Sheep. Frontiers in Physiology, 2019, 10, 563.	1.3	15
12	New approaches to studying early brain development inÂDownÂsyndrome. Developmental Medicine and Child Neurology, 2019, 61, 867-879.	1.1	35
13	γδT Cells Contribute to Injury in the Developing Brain. American Journal of Pathology, 2018, 188, 757-767.	1.9	44
14	Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury. Brain, Behavior, and Immunity, 2018, 74, 265-276.	2.0	25
15	TWEAK Receptor Deficiency Has Opposite Effects on Female and Male Mice Subjected to Neonatal Hypoxia–Ischemia. Frontiers in Neurology, 2018, 9, 230.	1.1	3
16	Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic–ischaemic brain injury. Biochemical Society Transactions, 2017, 45, 1067-1076.	1.6	51
17	Effect of Trp53 gene deficiency on brain injury after neonatal hypoxia-ischemia. Oncotarget, 2017, 8, 12081-12092.	0.8	5
18	Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury. International Journal of Molecular Sciences, 2015, 16, 22509-22526.	1.8	47

#	Article	IF	CITATIONS
19	Melatonin reduces excitotoxic blood–brain barrier breakdown in neonatal rats. Neuroscience, 2015, 311, 382-397.	1.1	32
20	Brain Barrier Properties and Cerebral Blood Flow in Neonatal Mice Exposed to Cerebral Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 818-827.	2.4	104
21	Does Caspase-6 Have a Role in Perinatal Brain Injury?. Developmental Neuroscience, 2015, 37, 321-337.	1.0	6
22	Microglia toxicity in preterm brain injury. Reproductive Toxicology, 2014, 48, 106-112.	1.3	53
23	Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Signaling and Cell Death in the Immature Central Nervous System after Hypoxia-Ischemia and Inflammation. Journal of Biological Chemistry, 2014, 289, 9430-9439.	1.6	82
24	Morphological evaluation of the cerebral blood vessels in the late gestation fetal sheep following hypoxia in utero. Microvascular Research, 2013, 85, 1-9.	1.1	12
25	VEGF expression and microvascular responses to severe transient hypoxia in the fetal sheep brain. Pediatric Research, 2013, 73, 310-316.	1.1	34
26	Experimental Modelling of the Consequences of Brief Late Gestation Asphyxia on Newborn Lamb Behaviour and Brain Structure. PLoS ONE, 2013, 8, e77377.	1.1	38
27	Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair?. Frontiers in Physiology, 2012, 3, 424.	1.3	111
28	Molecular Mechanisms of Neonatal Brain Injury. Neurology Research International, 2012, 2012, 1-16.	0.5	102
29	Inflammation in utero exacerbates ventilation-induced brain injury in preterm lambs. Journal of Applied Physiology, 2012, 112, 481-489.	1.2	39
30	Mitochondria and perinatal brain injury. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 35-38.	0.7	33
31	Initiation of Resuscitation with High Tidal Volumes Causes Cerebral Hemodynamic Disturbance, Brain Inflammation and Injury in Preterm Lambs. PLoS ONE, 2012, 7, e39535.	1.1	107
32	Changes in cerebral blood flow, cerebral metabolites, and breathing movements in the sheep fetus following asphyxia produced by occlusion of the umbilical cord. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R60-R69.	0.9	19