
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6002401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetics of Polymer Melt Intercalation. Macromolecules, 1995, 28, 8080-8085.	4.8	636
2	Microstructural Evolution of Melt Intercalated Polymerâ^'Organically Modified Layered Silicates Nanocomposites. Chemistry of Materials, 1996, 8, 2628-2635.	6.7	507
3	Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?. Colloids and Surfaces B: Biointerfaces, 2006, 49, 136-144.	5.0	313
4	The reinforcement of dentures. Journal of Oral Rehabilitation, 1999, 26, 185-194.	3.0	245
5	Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: Characterization and cell behaviour aspects. Biomaterials, 2005, 26, 5960-5971.	11.4	234
6	Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs). Dental Materials, 2000, 16, 41-47.	3.5	231
7	Surface functionalized titanium thin films: Zeta-potential, protein adsorption and cell proliferation. Colloids and Surfaces B: Biointerfaces, 2006, 50, 1-8.	5.0	230
8	A brief history of LED photopolymerization. Dental Materials, 2013, 29, 605-617.	3.5	207
9	Light-emitting diode (LED) polymerisation of dental composites: flexural properties and polymerisation potential. Biomaterials, 2000, 21, 1379-1385.	11.4	195
10	Future perspectives of resin-based dental materials. Dental Materials, 2009, 25, 1001-1006.	3.5	193
11	Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomaterialia, 2009, 5, 488-497.	8.3	192
12	Atomic force microscopy of biomaterials surfaces and interfaces. Surface Science, 2001, 491, 303-332.	1.9	186
13	Human Plasma Fibrinogen Adsorption on Ultraflat Titanium Oxide Surfaces Studied with Atomic Force Microscopy. Langmuir, 2000, 16, 8167-8175.	3.5	169
14	Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomaterialia, 2006, 2, 75-84.	8.3	165
15	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
16	Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Progress in Polymer Science, 2018, 80, 94-124.	24.7	145
17	Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate. Applied Surface Science, 2005, 250, 252-267.	6.1	143
18	In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. Journal of Colloid and Interface Science, 2004, 280, 442-448.	9.4	125

#	Article	IF	CITATIONS
19	Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Applied Catalysis A: General, 2010, 379, 30-37.	4.3	118
20	Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomaterials, 2003, 24, 1809-1820.	11.4	117
21	Human enamel dissolution in citric acid as a function of pH in the range 2.30â‰₱H≮.30 – a nanoindentation study. European Journal of Oral Sciences, 2003, 111, 258-262.	1.5	111
22	Release of metronidazole from electrospun poly(l-lactide-co-d/l-lactide) fibers for local periodontitis treatment. Dental Materials, 2012, 28, 179-188.	3.5	109
23	Photoinitiator dependent composite depth of cure and Knoop hardness with halogen and LED light curing units. Biomaterials, 2003, 24, 1787-1795.	11.4	106
24	Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dental Materials, 2020, 36, 1365-1378.	3.5	103
25	Layerâ€By‣ayer Assembly of βâ€Estradiol Loaded Mesoporous Silica Nanoparticles on Titanium Substrates and Its Implication for Bone Homeostasis. Advanced Materials, 2010, 22, 4146-4150.	21.0	102
26	High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties. Biomaterials, 2002, 23, 2955-2963.	11.4	92
27	Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by <i>Geobacter bremensis</i> vs. abiotic reduction by Na-dithionite. Biogeosciences, 2014, 11, 4953-4966.	3.3	92
28	Ultrasonication as a Method to Study Enamel Demineralisation during Acid Erosion. Caries Research, 2000, 34, 289-294.	2.0	82
29	Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials, 2009, 30, 3626-3635.	11.4	81
30	Controlling Protein Adsorption through Nanostructured Polymeric Surfaces. Advanced Healthcare Materials, 2018, 7, 1700995.	7.6	81
31	Visualisation of human plasma fibrinogen adsorbed on titanium implant surfaces with different roughness. Surface Science, 2001, 491, 405-420.	1.9	80
32	Second generation LEDs for the polymerization of oral biomaterials. Dental Materials, 2004, 20, 80-87.	3.5	79
33	Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials, 2016, 101, 156-164.	11.4	79
34	Evolutions, Revolutions and Trends in Biomaterials Science – A Perspective. Advanced Engineering Materials, 2007, 9, 1035-1050.	3.5	76
35	Human enamel erosion in constant composition citric acid solutions as a function of degree of saturation with respect to hydroxyapatite. Journal of Oral Rehabilitation, 2005, 32, 16-21.	3.0	71
36	The Early Stages of Native Enamel Dissolution Studied with Atomic Force Microscopy. Journal of Colloid and Interface Science, 2000, 232, 156-164.	9.4	70

KLAUS D JANDT

#	Article	lF	CITATIONS
37	Novel Biopolymeric Template for the Nucleation and Growth of Hydroxyapatite Crystals Based on Self-Assembled Fibrinogen Fibrils. Biomacromolecules, 2008, 9, 3258-3267.	5.4	70
38	Responsive Hybrid Polymeric/Metallic Nanoparticles for Catalytic Applications. Macromolecular Materials and Engineering, 2010, 295, 1049-1057.	3.6	70
39	Susceptibility of deciduous and permanent enamel to dietary acidâ€induced erosion studied with atomic force microscopy nanoindentation. European Journal of Oral Sciences, 2004, 112, 61-66.	1.5	69
40	Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation. Surface Science, 2001, 491, 456-467.	1.9	64
41	Quantification of dental erosion—A comparison of stylus profilometry and confocal laser scanning microscopy (CLSM). Dental Materials, 2010, 26, 326-336.	3.5	63
42	Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids and Surfaces B: Biointerfaces, 2016, 145, 617-625.	5.0	63
43	Enamel dissolution in citric acid as a function of calcium and phosphate concentrations and degree of saturation with respect to hydroxyapatite. European Journal of Oral Sciences, 2003, 111, 428-433.	1.5	62
44	Optical power outputs, spectra and dental composite depths of cure, obtained with blue light emitting diode (LED) and halogen light curing units (LCUs). British Dental Journal, 2002, 193, 459-463.	0.6	60
45	MBEC Versus MBIC: the Lack of Differentiation between Biofilm Reducing and Inhibitory Effects as a Current Problem in Biofilm Methodology. Biological Procedures Online, 2019, 21, 18.	2.9	60
46	Biomimetic growth of hydroxyapatite on super water-soluble carbon nanotube-protein hybrid nanofibers. Carbon, 2011, 49, 2216-2226.	10.3	59
47	Enamel dissolution as a function of solution degree of saturation with respect to hydroxyapatite: a nanoindentation study. Journal of Colloid and Interface Science, 2003, 265, 9-14.	9.4	58
48	Knoop hardness depth profiles and compressive strength of selected dental composites polymerized with halogen and LED light curing technologies. Journal of Biomedical Materials Research Part B, 2002, 63, 729-738.	3.1	57
49	Protein-Promoted Synthesis of Pt Nanoparticles on Carbon Nanotubes for Electrocatalytic Nanohybrids with Enhanced Glucose Sensing. Journal of Physical Chemistry C, 2011, 115, 11453-11460.	3.1	57
50	Developments and perspectives of scanning probe microscopy (SPM) on organic materials systems. Materials Science and Engineering Reports, 1998, 21, 221-295.	31.8	56
51	Further Modification to Soft Drinks to Minimise Erosion. Caries Research, 2002, 36, 70-74.	2.0	55
52	Time dependence of composite shrinkage using halogen and LED light curing. Dental Materials, 2005, 21, 278-286.	3.5	55
53	Surfaces engineering of polymeric films for biomedical applications. Materials Science and Engineering C, 2003, 23, 353-358.	7.3	52
54	Surface engineering of titanium thin films with silk fibroin via layer-by-layer technique and its effects on osteoblast growth behavior. Journal of Biomedical Materials Research - Part A, 2007, 82A, 927-935.	4.0	52

#	Article	IF	CITATIONS
55	Pectin, alginate and gum arabic polymers reduce citric acid erosion effects on human enamel. Dental Materials, 2010, 26, 831-839.	3.5	52
56	Multiparametric optimization of polymer solar cells: A route to reproducible high efficiency. Solar Energy Materials and Solar Cells, 2009, 93, 508-513.	6.2	49
57	Dental composite depth of cure with halogen and blue light emitting diode technology. British Dental Journal, 1999, 186, 388-391.	0.6	48
58	A novel two-level microstructured poly(N-isopropylacrylamide) hydrogel for controlled release. Acta Biomaterialia, 2010, 6, 3890-3898.	8.3	48
59	Toothbrush Abrasion of Surface Softened Enamel Studied with Tapping Mode AFM and AFM Nanoindentation. Caries Research, 2004, 38, 464-472.	2.0	47
60	In situ remineralisation of surface softened human enamel studied with AFM nanoindentation. Surface Science, 2004, 553, 105-114.	1.9	47
61	Surface modification of titanium thin film with chitosan via electrostatic self-assembly technique and its influence on osteoblast growth behavior. Journal of Materials Science: Materials in Medicine, 2008, 19, 499-506.	3.6	47
62	Growth of osteoblast-like cells on biomimetic apatite-coated chitosan scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 7-16.	3.4	47
63	Micro-structured smart hydrogels with enhanced protein loading and release efficiency. Acta Biomaterialia, 2010, 6, 1297-1306.	8.3	47
64	Controlled assembly of protein-protected gold nanoparticles on noncovalent functionalized carbon nanotubes. Carbon, 2010, 48, 645-653.	10.3	47
65	Enhanced mechanical properties of a novel, injectable, fiber-reinforced brushite cement. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 328-338.	3.1	47
66	Strengthening Polymer Interfaces with Triblock Copolymers. Macromolecules, 1997, 30, 549-560.	4.8	46
67	A Novel Approach to Prepare Porous Poly(<i>N</i> â€isopropylacrylamide) Hydrogel with Superfast Shrinking Kinetics. Macromolecular Rapid Communications, 2008, 29, 593-597.	3.9	46
68	The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats. Biomaterials, 2011, 32, 8041-8047.	11.4	45
69	The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats. Acta Biomaterialia, 2013, 9, 4926-4934.	8.3	45
70	Influence of different light curing units on the cytotoxicity of various dental composites. Dental Materials, 2007, 23, 1342-1348.	3.5	43
71	Antibacterial effect of different root canal sealers on three bacterial species. Dental Materials, 2013, 29, 542-549.	3.5	43
72	<i>In Situ</i> Formation of Nanohybrid Shish-Kebabs during Electrospinning for the Creation of Hierarchical Shish-Kebab Structures. Macromolecules, 2016, 49, 3550-3558.	4.8	43

#	Article	IF	CITATIONS
73	A Practical Approach for Ambientâ€Pressure Hydrogenations Using Pd on Porous Glass. ChemSusChem, 2009, 2, 77-82.	6.8	42
74	Transient Surface Roughening of Thin Films of Phase Separating Polymer Mixtures. Langmuir, 1996, 12, 3716-3720.	3.5	41
75	The influence of storage and indenter load on the Knoop hardness of dental composites polymerized with LED and halogen technologies. Dental Materials, 2004, 20, 21-28.	3.5	41
76	Inkjet printing of laminin gradient to investigate endothelial cellular alignment. Colloids and Surfaces B: Biointerfaces, 2009, 72, 230-235.	5.0	41
77	Biomimetic 3D hydroxyapatite architectures with interconnected pores based on electrospun biaxially orientated PCL nanofibers. RSC Advances, 2014, 4, 14833-14839.	3.6	41
78	Resin-composite cytotoxicity varies with shade and irradiance. Dental Materials, 2012, 28, 312-319.	3.5	40
79	Physical vapor deposited titanium thin films for biomedical applications: Reproducibility of nanoscale surface roughness and microbial adhesion properties. Applied Surface Science, 2013, 280, 578-589.	6.1	40
80	Surface fine structure of treated dentine investigated with tapping mode atomic force microscopy (TMAFM). Journal of Dentistry, 1999, 27, 137-144.	4.1	39
81	Image Analysis of Endothelial Microstructure and Endothelial Cell Dimensions of Human Arteries – A Preliminary Study. Advanced Engineering Materials, 2011, 13, B54.	3.5	39
82	Probing the future in functional soft drinks on the nanometre scale—towards tooth friendly soft drinks. Trends in Food Science and Technology, 2006, 17, 263-271.	15.1	38
83	Allâ€Solidâ€State Cableâ€Type Supercapacitors with Ultrahigh Rate Capability. Advanced Materials Technologies, 2016, 1, 1600012.	5.8	38
84	How the Surface Nanostructure of Polyethylene Affects Protein Assembly and Orientation. ACS Nano, 2011, 5, 3120-3131.	14.6	37
85	Shish-kebab crystals in polyethylene investigated by scanning force microscopy. Polymer, 1994, 35, 2458-2462.	3.8	36
86	Mechanical properties and radiopacity of experimental glass-silica-metal hybrid composites. Dental Materials, 2002, 18, 429-435.	3.5	36
87	Reproducible Biofilm Cultivation of Chemostat-Grown Escherichia coli and Investigation of Bacterial Adhesion on Biomaterials Using a Non-Constant-Depth Film Fermenter. PLoS ONE, 2014, 9, e84837.	2.5	36
88	Ductile-to-Semiductile Transition in PP-MWNT Nanocomposites. Macromolecular Rapid Communications, 2007, 28, 834-841.	3.9	35
89	Controlled self-assembly and templated metallization of fibrinogen nanofibrils. Chemical Communications, 2008, , 3903.	4.1	35
90	The influence of various light curing units on the cytotoxicity of dental adhesives. Dental Materials, 2009, 25, 1446-1452.	3.5	34

#	Article	IF	CITATIONS
91	Study of energy transfer by different light curing units into a class III restoration as a function of tilt angle and distance, using a MARC Patient Simulator (PS). Dental Materials, 2016, 32, 676-686.	3.5	34
92	Protein Handshake on the Nanoscale: How Albumin and Hemoglobin Self-Assemble into Nanohybrid Fibers. ACS Nano, 2018, 12, 1211-1219.	14.6	34
93	Characterization of Ultraflat Titanium Oxide Surfaces. Chemistry of Materials, 2002, 14, 777-789.	6.7	33
94	Scanning force microscopy of melt-crystallized, metal-evaporated poly(butene-1) ultrathin films. Macromolecules, 1993, 26, 6552-6556.	4.8	32
95	Effect of the Monomer Ratio on the Strengthening of Polymer Phase Boundaries by Random Copolymers. Macromolecules, 1997, 30, 6727-6736.	4.8	32
96	Aspects of the physical chemistry of polymers, biomaterials and mineralised tissues investigated with atomic force microscopy (AFM). Colloids and Surfaces B: Biointerfaces, 2000, 19, 301-314.	5.0	31
97	Influence of Soft Drinks on the Thickness and Morphology of in Situ Acquired Pellicle Layer on Enamel. Journal of Colloid and Interface Science, 2002, 251, 263-270.	9.4	29
98	Biomimetic mineralization: Long-term observations in patients with dentin sensitivity. Dental Materials, 2012, 28, 457-464.	3.5	29
99	Enhanced bone formation in sheep vertebral bodies after minimally invasive treatment with a novel, PLGA fiber-reinforced brushite cement. Spine Journal, 2017, 17, 709-719.	1.3	28
100	Acids with an equivalent taste lead to different erosion of human dental enamel. Dental Materials, 2011, 27, 1017-1023.	3.5	27
101	Fishing for compliance. Nature Materials, 2008, 7, 692-693.	27.5	26
102	Degree of Conversion of Luting Resins Around Ceramic Inlays in Natural Deep Cavities: A Micro-Raman Spectroscopy Analysis. Operative Dentistry, 2010, 35, 579-586.	1.2	26
103	Morphology and structure of polymer layers protecting dental enamel against erosion. Dental Materials, 2012, 28, 1089-1097.	3.5	26
104	Improved Microcontact Printing of Proteins using Hydrophilic Thermoplastic Elastomers as Stamp Materials. Advanced Engineering Materials, 2007, 9, 1123-1128.	3.5	25
105	A new strategy to prepare temperature-sensitive poly(N-isopropylacrylamide) microgels. Colloid and Polymer Science, 2008, 286, 1209-1213.	2.1	25
106	Crystalline Monolayer Ordering at Substrate/Polymer Interfaces in Poly(3â€hexylthiophene) Ultrathin Films. Macromolecular Chemistry and Physics, 2011, 212, 905-914.	2.2	25
107	Singleâ€Molecule Tracking of Fibrinogen Dynamics on Nanostructured Poly(ethylene) Films. Advanced Functional Materials, 2012, 22, 2617-2623.	14.9	25
108	Cu on porous glass: An easily recyclable catalyst for the microwave-assisted azide–alkyne cycloaddition in water. Applied Catalysis A: General, 2013, 451, 94-100.	4.3	25

#	Article	IF	CITATIONS
109	Hemodynamic aspects of reduced platelet adhesion on bioinspired microstructured surfaces. Colloids and Surfaces B: Biointerfaces, 2016, 145, 502-509.	5.0	24
110	Effects of oxygen plasma treatment on interfacial shear strength and post-peak residual strength of a PLCA fiber-reinforced brushite cement. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 347-358.	3.1	24
111	Protein Adsorption on Nano-scaled, Rippled TiO2and Si Surfaces. Biointerphases, 2012, 7, 55.	1.6	23
112	Interfacial Free Energy Driven Nanophase Separation in Poly(3-hexylthiophene)/[6,6]-Phenyl-C61-butyric Acid Methyl Ester Thin Films. Langmuir, 2012, 28, 5257-5266.	3.5	22
113	Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine Journal, 2017, 17, 1699-1711.	1.3	22
114	Rationally Engineered Electrodes for a Highâ€Performance Solidâ€State Cableâ€Type Supercapacitor. Advanced Functional Materials, 2017, 27, 1606696.	14.9	22
115	Microorganisms @ materials surfaces in aircraft: Potential risks for public health? – A systematic review. Travel Medicine and Infectious Disease, 2019, 28, 6-14.	3.0	22
116	Effect of an electric field during the deposition of silicon dioxide thin films by plasma enhanced atomic layer deposition: an experimental and computational study. Nanoscale, 2020, 12, 2089-2102.	5.6	22
117	Characterization of poly(1-butene) surfaces by scanning tunneling microscopy. Polymer Bulletin, 1991, 26, 95-100.	3.3	21
118	Stable Extracellular Matrix Protein Patterns Guide the Orientation of Osteoblastâ€like Cells. Advanced Functional Materials, 2011, 21, 4079-4087.	14.9	21
119	Microwaveâ€Assisted Partial Hydrogenation of Citral by using Ionic Liquid oated Porous Glass Catalysts. ChemSusChem, 2011, 4, 1654-1661.	6.8	20
120	Maintaining the Hydrophilic–Hydrophobic Balance of Polyesters with Adjustable Crystallinity for Tailor-Made Nanoparticles. Macromolecules, 2018, 51, 5567-5576.	4.8	20
121	Decreased extrusion of calcium phosphate cement versus high viscosity PMMA cement into spongious bone marrow—an ex vivo and in vivo study in sheep vertebrae. Spine Journal, 2016, 16, 1468-1477.	1.3	19
122	How Nanotopography-Induced Conformational Changes of Fibrinogen Affect Platelet Adhesion and Activation. Langmuir, 2020, 36, 11573-11580.	3.5	19
123	Sustainable preparation of anti-inflammatory atorvastatin PLGA nanoparticles. International Journal of Pharmaceutics, 2021, 599, 120404.	5.2	19
124	Templating α-Helical Poly(l-lysine)/Polyanion Complexes by Nanostructured Uniaxially Oriented Ultrathin Polyethylene Films. Langmuir, 2010, 26, 18893-18901.	3.5	18
125	Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties. RSC Advances, 2017, 7, 3720-3726.	3.6	17
126	High-resolution STM-imaging of highly oriented ultra thin poly(ethylene) films. Polymer Bulletin, 1991, 27, 101-107.	3.3	16

#	Article	IF	CITATIONS
127	Tuning Cell Adhesion on PTFE Surfaces by Laser Induced Microstructures. Advanced Engineering Materials, 2007, 9, 1104-1113.	3.5	16
128	Fibrinogen Adsorption on Biomaterials – A Numerical Study. Macromolecular Bioscience, 2010, 10, 1216-1223.	4.1	16
129	First-time systematic postoperative clinical assessment of a minimally invasive approach for lumbar ventrolateral vertebroplasty in the large animal model sheep. Spine Journal, 2016, 16, 1263-1275.	1.3	16
130	Enhanced Osteoblast Adhesion to Epoxideâ€Functionalized Surfaces. Advanced Functional Materials, 2008, 18, 1723-1731.	14.9	15
131	Novel 1-D biophotonic nanohybrids: protein nanofibers meet quantum dots. Soft Matter, 2011, 7, 2011.	2.7	15
132	Extended-Chain Induced Bulk Morphologies Occur at Surfaces of Thin Co-Oligomer Films. Macromolecules, 2012, 45, 4740-4748.	4.8	15
133	Alignment of multi-wall carbon nanotubes by disentanglement in ultra-thin melt-drawn polymer films. Carbon, 2013, 60, 366-378.	10.3	15
134	Direct observation of a diblock copolymer-induced microemulsion at a polymer/polymer interface. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 2351-2357.	2.1	14
135	Nanoscale Surface Lamellar Orientation and Lamellar Doubling in Ultrathin UHMWâ^PE Films. Macromolecules, 2007, 40, 5812-5819.	4.8	14
136	Formation and Topotactical Orientation of Fibrinogen Nanofibrils on Graphite Nanostructures. Advanced Engineering Materials, 2009, 11, B177.	3.5	14
137	Mechanical properties of microwave cured glass fibre epoxy composites prepared by resin transfer moulding. Journal of Composite Materials, 2015, 49, 2839-2847.	2.4	14
138	Layer-by-layer gelatin/chitosan polyelectrolyte coated nanoparticles on Ti implants for prevention of implant-associated infections. EXPRESS Polymer Letters, 2017, 11, 73-82.	2.1	14
139	Cold nanoparticle contact point density controls microbial adhesion on gold surfaces. Colloids and Surfaces B: Biointerfaces, 2018, 163, 201-208.	5.0	14
140	Scanning force microscopy of nanostructured uniaxially oriented ultra thin film surfaces of isotactic polystyrene. Polymer, 1992, 33, 5331-5333.	3.8	13
141	Atomic force microscopy of polymer single crystals and melt-drawn films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 87, 235-243.	4.7	13
142	Biomimetic Mineralization: Effects on Human Enamel In Vivo. Advanced Engineering Materials, 2010, 12, B571.	3.5	13
143	Liquid Phase Hydrogenation of Benzalacetophenone: Effect of Solvent, Catalyst Support, Catalytic Metal and Reaction Conditions. Chinese Journal of Catalysis, 2011, 32, 1312-1322.	14.0	13
144	Facets of protein assembly on nanostructured titanium oxide surfaces. Acta Biomaterialia, 2013, 9, 5810-5820.	8.3	13

KLAUS D JANDT

#	Article	IF	CITATIONS
145	pH-Dependent Ordered Fibrinogen Adsorption on Polyethylene Single Crystals. Langmuir, 2016, 32, 11868-11877.	3.5	13
146	In Vitro Release of Bioactive Bone Morphogenetic Proteins (GDF5, BB-1, and BMP-2) from a PLGA Fiber-Reinforced, Brushite-Forming Calcium Phosphate Cement. Pharmaceutics, 2019, 11, 455.	4.5	13
147	Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges. Journal of Functional Biomaterials, 2022, 13, 86.	4.4	13
148	Investigating poly(1-butene) films by SFM/STM. Ultramicroscopy, 1992, 42-44, 989-997.	1.9	12
149	GDF5 significantly augments the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine Journal, 2017, 17, 1685-1698.	1.3	12
150	The GDF5 mutant BB-1 enhances the bone formation induced by an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine Journal, 2018, 18, 357-369.	1.3	12
151	Freezing of Rat Tibiae at -20°C Does Not Affect the Mechanical Properties of Intramedullary Bone/Implant-Interface: Brief Report. The Open Orthopaedics Journal, 2011, 5, 219-222.	0.2	12
152	Scanning force microscopy of the crystalline/amorphous interface of ultradrawn poly(ethylene). Applied Physics A: Solids and Surfaces, 1994, 59, 145-150.	1.4	11
153	High molar mass amphiphilic block copolymer enables alignment and dispersion of unfunctionalized carbon nanotubes in melt-drawn thin-films. Polymer, 2017, 127, 15-27.	3.8	11
154	Poly(3-ethylglycolide): a well-defined polyester matching the hydrophilic hydrophobic balance of PLA. Polymer Chemistry, 2019, 10, 5440-5451.	3.9	11
155	Self-Assembly of Copolyesters into Stereocomplex Crystallites Tunes the Properties of Polyester Nanoparticles. Macromolecules, 2020, 53, 8340-8351.	4.8	11
156	Infections @ Trauma/Orthopedic Implants: Recent Advances on Materials, Methods, and Microbes—A Mini-Review. Materials, 2021, 14, 5834.	2.9	11
157	A combined scanning tunneling, scanning force, frictional force, and attractive force microscope. Review of Scientific Instruments, 1994, 65, 390-393.	1.3	10
158	Monodisperse, Temperature‣ensitive Microgels Crosslinked by SiOSi Bonds. Macromolecular Materials and Engineering, 2009, 294, 396-404.	3.6	10
159	Selectively Promoting or Preventing Osteoblast Growth on Titanium Functionalized with Polyelectrolyte Multilayers. Advanced Engineering Materials, 2011, 13, B454.	3.5	10
160	Enveloping Self-Assembly of Carbon Nanotubes at Copolymer Micelle Cores. Langmuir, 2014, 30, 14263-14269.	3.5	10
161	Zwitterionic Cellulose Carbamate with Regioselective Substitution Pattern: A Coating Material Possessing Antimicrobial Activity. Macromolecular Bioscience, 2016, 16, 522-534.	4.1	10
162	Template assisted surface microstructuring of flowable dental composites and its effect on microbial adhesion properties. Dental Materials, 2016, 32, 476-487.	3.5	10

#	Article	IF	CITATIONS
163	Copolymerization of Caprolactone Isomers to Obtain Nanoparticles with Constant Hydrophobicity and Tunable Crystallinity. Macromolecules, 2020, 53, 5208-5217.	4.8	10
164	Pathway mediated microstructures and phase morphologies of asymmetric double crystalline co-oligomers. RSC Advances, 2014, 4, 7900.	3.6	9
165	How the Calorimetric Properties of a Crystalline Copolymer Correlate to Its Surface Nanostructures. Macromolecules, 2014, 47, 1705-1714.	4.8	9
166	The poly (l-lactid-co-glycolide; PLGA) fiber component of brushite-forming calcium phosphate cement induces the osteogenic differentiation of human adipose tissue-derived stem cells. Biomedical Materials (Bristol), 2019, 14, 055012.	3.3	9
167	Quantifying the relationship between surfaces' nano-contact point density and adhesion force of Candida albicans. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111177.	5.0	9
168	Strainâ€Induced Phase Morphology in Melt Drawn Ultrathin Highly Oriented Block Copolymer Films. Macromolecular Rapid Communications, 2008, 29, 876-884.	3.9	8
169	Temperatureâ€Sensitive Simultaneous Interpenetrating Polymeric Networks With Improved Mechanical Properties and Shrinking Kinetics. Advanced Engineering Materials, 2009, 11, B12.	3.5	8
170	Colonization of Enterococcus faecalis in a new SiO/SiO2-microtube in vitro model system as a function of tubule diameter. Dental Materials, 2014, 30, 661-668.	3.5	8
171	Mechanisms and kinetics of the crystal thickening of poly(butadiene)-block-poly(ethylene oxide) during annealing within the melting range. European Polymer Journal, 2015, 68, 10-20.	5.4	8
172	Nanocrystal Width Controls Fibrinogen Orientation and Assembly Kinetics on Poly(butene-1) Surfaces. Langmuir, 2017, 33, 6563-6571.	3.5	8
173	Short-time pre-washing of brushite-forming calcium phosphate cement improves its in vitro cytocompatibility. Tissue and Cell, 2017, 49, 697-710.	2.2	8
174	Biopolymer surface modification of PLGA fibers enhances interfacial shear strength and supports immobilization of rhGDF-5 in fiber-reinforced brushite cement. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104285.	3.1	8
175	The antimicrobial effect of calcium-doped titanium is activated by fibrinogen adsorption. Materials Horizons, 2022, 9, 1962-1968.	12.2	8
176	Microstructure of block copolymer reinforced interfaces observed with frictional force microscopy. Advanced Materials, 1996, 8, 660-662.	21.0	7
177	The Effect of <scp>d,l</scp> â€Lactidyl/ϵâ€Caproyl Weight Ratio and Chemical Microstructure on Surface Properties of Biodegradable Poly (<scp>d,l</scp> â€Lactide)â€coâ€Poly (ϵâ€Caprolactone) Random Copolymers. Advanced Engineering Materials, 2008, 10, B23.	3.5	7
178	Nanoconfinement and Sansetsukon-like Nanocrawling Govern Fibrinogen Dynamics and Self-Assembly on Nanostructured Polymeric Surfaces. Langmuir, 2018, 34, 14309-14316.	3.5	7
179	Drug delivery of 6-bromoindirubin-3'-glycerol-oxime ether employing poly(d,l-lactide-co-glycolide)-based nanoencapsulation techniques with sustainable solvents. Journal of Nanobiotechnology, 2022, 20, 5.	9.1	7
180	Osteocytes Influence on Bone Matrix Integrity Affects Biomechanical Competence at Bone-Implant Interface of Bioactive-Coated Titanium Implants in Rat Tibiae. International Journal of Molecular Sciences, 2022, 23, 374.	4.1	7

#	Article	IF	CITATIONS
181	Microscopic aspects of polymer-metal epitaxy. Journal of Materials Science, 1996, 31, 1779-1788.	3.7	6
182	Multiple Surface Functionalities through Step-by-Step Hydrolysis of Self-Assembled Monolayers. Chemistry of Materials, 2008, 20, 5197-5202.	6.7	6
183	Effect of O ₂ -Plasma Treatment on Surface Characteristics and Osteoblast-Like MG-63 Cells Response of Ti-30Nb-1Fe-1Hf Alloy. Materials Transactions, 2009, 50, 891-898.	1.2	6
184	The Janusâ€ S AM Approach for the Flexible Functionalization of Gold and Titanium Oxide Surfaces. Small, 2010, 6, 465-470.	10.0	6
185	A Comparison of the Cell Compatibility of Poly(ethyleneimine) with that of other Cationic Biopolymers Used in Applications at Biointerfaces. Advanced Engineering Materials, 2011, 13, B285.	3.5	6
186	Quantitative characterization of endothelial cell morphologies depending on shear stress in different blood vessels of domestic pigs using a focused ion beam and high resolution scanning electron microscopy (FIB-SEM). Tissue and Cell, 2015, 47, 205-212.	2.2	6
187	Postembedding Decalcification of Mineralized Tissue Sections Preserves the Integrity of Implanted Biomaterials and Minimizes Number of Experimental Animals. BioMed Research International, 2017, 2017, 1-10.	1.9	6
188	Clinical long-term success of contemporary nano-filled resin composites in class I and II restorations cured by LED or halogen light. Clinical Oral Investigations, 2018, 22, 1651-1662.	3.0	6
189	The Actionâ€Networks of Nanosilver: Bridging the Gap between Material and Biology. Advanced Healthcare Materials, 2021, 10, e2100619.	7.6	6
190	Effectiveness of Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) Compared to Fluoride Products in an In-Vitro Demineralization Model. Materials, 2021, 14, 5974.	2.9	6
191	Definition of the Joint Cartilageâ€Bone Interface by Topological Scanning Technologies: Considerations for Optimized Material Interfaces in Implant Technology. Advanced Engineering Materials, 2007, 9, 1097-1103.	3.5	5
192	Editorial Advanced Biomaterials 1/2008. Advanced Engineering Materials, 2008, 10, B1-B2.	3.5	5
193	Antibacterial effect of silver (I) carbohydrate complexes on oral pathogenic key species in vitro. BMC Oral Health, 2016, 16, 42.	2.3	5
194	The old sheep: a convenient and suitable model for senile osteopenia. Journal of Bone and Mineral Metabolism, 2020, 38, 620-630.	2.7	5
195	Bioactive TiOB oating on Titanium Alloy Implants Enhances Osseointegration in a Rat Model. Advanced Engineering Materials, 2012, 14, B21.	3.5	4
196	How different mesophases affect the interactive crystallisation of a block co-oligomer. Polymer, 2014, 55, 1893-1900.	3.8	4
197	Reduced Graphene Oxide Paper: Fabrication by a Green Thermal Reduction Method and Preliminary Study of its <i>In Vitro</i> Cytotoxicity. Journal of Nano Research, 2017, 45, 199-207.	0.8	4
198	3D model of intra-yarn fiber volume fraction gradients of woven fabrics. Composite Structures, 2017, 180, 944-954.	5.8	4

#	Article	IF	CITATIONS
199	Self-assembled fibrinogen–fibronectin hybrid protein nanofibers with medium-sensitive stability. RSC Advances, 2021, 11, 14113-14120.	3.6	4
200	Distinct endocytosis and immune activation of poly(lactic-co-glycolic) acidÂnanoparticles prepared by single- and double-emulsion evaporation. Nanomedicine, 2021, 16, 2075-2094.	3.3	4
201	Rutile facet-dependent fibrinogen conformation: Why crystallographic orientation matters. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112506.	5.0	4
202	STM investigations of an alkane-metal-system (C32H66/In). Polymer Bulletin, 1994, 33, 687-691.	3.3	3
203	Surface morphology of a liquid crystalline side-chain polymer investigated by scanning force microscopy. Polymer Bulletin, 1994, 32, 487-492.	3.3	3
204	Observation of phase transitions in an antiferroelectric liquid crystal investigated by scanning tunneling microscopy. Journal of Applied Physics, 1995, 77, 122-126.	2.5	3
205	Advanced Biomaterials2010: Growth. Advanced Engineering Materials, 2010, 12, B1-B2.	3.5	3
206	Discrimination between random and non-random processes in early bacterial colonization on biomaterial surfaces: application of point pattern analysis. Biofouling, 2014, 30, 1023-1033.	2.2	3
207	Novel protein and peptide nanofibrous structures via supramolecular co-assembly. , 2020, , 69-97.		3
208	Performance of Calcium Phosphate Cements in the Augmentation of Sheep Vertebrae—An Ex Vivo Study. Materials, 2021, 14, 3873.	2.9	3
209	A Method for the Realâ€Time Observation of Endodermal Cell Behavior on Micropatterned Surfaces. Advanced Engineering Materials, 2009, 11, B106.	3.5	2
210	Near‣urface Microstructural Reorganization of UHMWPE under Cyclic Load – A Pilot Study. Advanced Engineering Materials, 2011, 13, B476.	3.5	2
211	Quantitative characterization of the complexation between proteins and electroneutral polymers. RSC Advances, 2013, 3, 20254.	3.6	2
212	In vitroanalysis of biopolymer coating with glycidoxypropyltrimethoxysilane on hernia meshes. , 2017, 105, 1083-1090.		2
213	Indirect morphological analysis of particles in polymer particle composites via non-destructive permittivity measurements. Composites Science and Technology, 2019, 169, 176-185.	7.8	2
214	Polystyrene Homopolymer Enhances Dispersion of MWCNTs Stabilized in Solution by a PS-b-P2VP Copolymer. Langmuir, 2021, 37, 391-399.	3.5	2
215	An advanced geometrical model for laminated woven fabrics using Lamé exponents with enhanced accuracy. Journal of Composite Materials, 2018, 52, 1443-1455.	2.4	1
216	Acetabular Cup with a Trabecular Coating: A Novel Approach to a Monolithic Cup Made of One High‣trength Ceramic Material. Advanced Engineering Materials, 2018, 20, 1800230.	3.5	1

#	Article	IF	CITATIONS
217	The Nanostructure of Evaporated Titanium Thin Films for Biological Performance Studies. Microscopy and Microanalysis, 2003, 9, 456-457.	0.4	0
218	Controlling Cell Growth by Nanoparticles. Materials Research Society Symposia Proceedings, 2006, 950, 1.	0.1	0
219	Foundation for Chinese-German Cooperation in advanced biomedical nanostructures laid. Advanced Engineering Materials, 2010, 12, B396-B396.	3.5	0
220	Facing Biointerfaces. Advanced Engineering Materials, 2011, 13, B333-B333.	3.5	0
221	Towards ECM-Analogue Three-Dimensional Biointerfaces. Advanced Engineering Materials, 2011, 13, B263-B263.	3.5	0
222	Focus on Materials in Biomaterials Science. Advanced Engineering Materials, 2011, 13, B431.	3.5	0
223	Euro BioMat 2011. Advanced Engineering Materials, 2012, 14, B3-B3.	3.5	0
224	An Advanced Transformation. Advanced Engineering Materials, 2012, 14, B293-B293.	3.5	0
225	Biomaterials at Materials Science and Engineering (MSE) 2012. Bioinspired, Biomimetic and Nanobiomaterials, 2013, 2, 98-99.	0.9	0