
William B Terzaghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6001966/publications.pdf Version: 2024-02-01

WILLIAM B TERZACHL

#	Article	IF	CITATIONS
1	Mutual upregulation of HY5 and TZP in mediating phytochrome A signaling. Plant Cell, 2022, 34, 633-654.	6.6	13
2	Integration of light and temperature signaling pathways in plants. Journal of Integrative Plant Biology, 2022, 64, 393-411.	8.5	25
3	COP1 positively regulates ABA signaling during Arabidopsis seedling growth in darkness by mediating ABA-induced ABI5 accumulation. Plant Cell, 2022, 34, 2286-2308.	6.6	17
4	Integrated strategies for increasing rapeseed yield. Trends in Plant Science, 2022, 27, 742-745.	8.8	16
5	Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biology, 2021, 22, 185.	8.8	47
6	A minus-end directed kinesin motor directs gravitropism in Physcomitrella patens. Nature Communications, 2021, 12, 4470.	12.8	4
7	CRISPR/Cas9â€ŧargeted mutagenesis of the <i>BnaA03.BP</i> gene confers semiâ€dwarf and compact architecture to rapeseed (<i>Brassica napus</i> L.). Plant Biotechnology Journal, 2021, 19, 2383-2385.	8.3	26
8	Knockout of two <i>Bna<scp>MAX</scp>1</i> homologs by <scp>CRISPR</scp> /Cas9â€ŧargeted mutagenesis improves plant architecture and increases yield in rapeseed (<i>Brassica napus</i> L.). Plant Biotechnology Journal, 2020, 18, 644-654.	8.3	117
9	A Copper(II) Macrocycle Complex for Sensing Biologically Relevant Organic Anions in a Competitive Fluorescence Assay: Oxalate Sensor or Urate Sensor?. ACS Omega, 2020, 5, 19469-19477.	3.5	11
10	MYB30 Is a Key Negative Regulator of Arabidopsis Photomorphogenic Development That Promotes PIF4 and PIF5 Protein Accumulation in the Light. Plant Cell, 2020, 32, 2196-2215.	6.6	67
11	The cold response regulator CBF1 promotes <i>Arabidopsis</i> hypocotyl growth at ambient temperatures. EMBO Journal, 2020, 39, e103630.	7.8	49
12	Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nature Communications, 2020, 11, 1592.	12.8	61
13	Toward Magnetosomes for Breast Cancer Theranostics. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2020, 4, 194-199.	3.4	0
14	Enhanced Vitamin C Production Mediated by an ABA-Induced PTP-like Nucleotidase Improves Plant Drought Tolerance in Arabidopsis and Maize. Molecular Plant, 2020, 13, 760-776.	8.3	47
15	PHYTOCHROME-INTERACTING FACTORS Interact with the ABA Receptors PYL8 and PYL9 to Orchestrate ABA Signaling in Darkness. Molecular Plant, 2020, 13, 414-430.	8.3	69
16	The Effects of Earthworms on Fungal Diversity and Community Structure in Farmland Soil With Returned Straw. Frontiers in Microbiology, 2020, 11, 594265.	3.5	9
17	Earthworms accelerate rice straw decomposition and maintenance of soil organic carbon dynamics in rice agroecosystems. PeerJ, 2020, 8, e9870.	2.0	3
18	<i>Cis</i> â€regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. Plant Journal, 2019, 97, 555-570.	5.7	33

#	Article	IF	CITATIONS
19	<i>Arabidopsis</i> PP6 phosphatases dephosphorylate PIF proteins to repress photomorphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20218-20225.	7.1	14
20	A largeâ€scale circular <scp>RNA</scp> profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant Journal, 2019, 98, 697-713.	5.7	99
21	Three BnalAA7 homologs are involved in auxin/brassinosteroid-mediated plant morphogenesis in rapeseed (Brassica napus L.). Plant Cell Reports, 2019, 38, 883-897.	5.6	25
22	Simultaneous expression of ClopHensor and SLC26A3 reveals the nature of endogenous oxalate transport in CHO cells. Biology Open, 2019, 8, .	1.2	4
23	Genomeâ€wide association study dissects the genetic bases of salt tolerance in maize seedlings. Journal of Integrative Plant Biology, 2019, 61, 658-674.	8.5	72
24	Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications, 2019, 10, 5279.	12.8	153
25	TANDEM ZINC-FINGER/PLUS3 Is a Key Component of Phytochrome A Signaling. Plant Cell, 2018, 30, 835-852.	6.6	49
26	Hinge region of <i>Arabidopsis</i> phyA plays an important role in regulating phyA function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11864-E11873.	7.1	22
27	<i>OsPKpα1</i> encodes a plastidic pyruvate kinase that affects starch biosynthesis in the rice endosperm. Journal of Integrative Plant Biology, 2018, 60, 1097-1118.	8.5	26
28	The Maize ABA Receptors ZmPYL8, 9, and 12 Facilitate Plant Drought Resistance. Frontiers in Plant Science, 2018, 9, 422.	3.6	69
29	<scp>TSV</scp> , a putative plastidic oxidoreductase, protects rice chloroplasts from cold stress during development by interacting with plastidic thioredoxin Z. New Phytologist, 2017, 215, 240-255.	7.3	58
30	OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. Plant Molecular Biology, 2017, 95, 345-357.	3.9	60
31	Pedigreeâ€based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding. Plant Biotechnology Journal, 2016, 14, 638-648.	8.3	38
32	<i>Arabidopsis</i> SAURs are critical for differential light regulation of the development of various organs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6071-6076.	7.1	127
33	<i>SLG</i> controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Journal of Experimental Botany, 2016, 67, 4241-4253.	4.8	103
34	WHITE PANICLE1, a Val-tRNA Synthetase Regulating Chloroplast Ribosome Biogenesis in Rice, Is Essential for Early Chloroplast Development. Plant Physiology, 2016, 170, 2110-2123.	4.8	74
35	<i>DEFORMED FLORAL ORGAN1</i> (<i>DFO1</i>) regulates floral organ identity by epigenetically repressing the expression of <i>OsMADS58</i> in rice (<i>Oryza sativa</i>). New Phytologist, 2015, 206, 1476-1490.	7.3	56
36	Arabidopsis DET1 Represses Photomorphogenesis in Part by Negatively Regulating DELLA Protein Abundance in Darkness. Molecular Plant, 2015, 8, 622-630.	8.3	26

William B Terzaghi

#	Article	IF	CITATIONS
37	Multiple photomorphogenic repressors work in concert to regulate Arabidopsis seedling development. Plant Signaling and Behavior, 2015, 10, e1011934.	2.4	13
38	Genomic Features and Regulatory Roles of Intermediate-Sized Non-Coding RNAs in Arabidopsis. Molecular Plant, 2014, 7, 514-527.	8.3	77
39	Highly efficient genotyping of rice biparental populations by GoldenGate assays based on parental resequencing. Theoretical and Applied Genetics, 2014, 127, 297-307.	3.6	13
40	Arabidopsis DE-ETIOLATED1 Represses Photomorphogenesis by Positively Regulating Phytochrome-Interacting Factors in the Dark. Plant Cell, 2014, 26, 3630-3645.	6.6	116
41	<i>Arabidopsis</i> noncoding RNA mediates control of photomorphogenesis by red light. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10359-10364.	7.1	317
42	UV-B-induced photomorphogenesis in Arabidopsis. Protein and Cell, 2013, 4, 485-492.	11.0	61
43	Multifaceted roles of <i>Arabidopsis</i> PP6 phosphatase in regulating cellular signaling and plant development. Plant Signaling and Behavior, 2013, 8, e22508.	2.4	14
44	The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2013, 25, 517-534.	6.6	98
45	A PP6-Type Phosphatase Holoenzyme Directly Regulates PIN Phosphorylation and Auxin Efflux in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2497-2514.	6.6	84
46	Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two <i>Arabidopsis</i> Ecotypes and Their Reciprocal Hybrids. Plant Cell, 2012, 24, 875-892.	6.6	297
47	Genomic basis for light control of plant development. Protein and Cell, 2012, 3, 106-116.	11.0	78
48	DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Science, 2011, 180, 352-357.	3.6	49
49	<i>Arabidopsis</i> CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and Flowering Time Â. Plant Cell, 2010, 22, 108-123.	6.6	182
50	DWA1 and DWA2, Two <i>Arabidopsis</i> DWD Protein Components of CUL4-Based E3 Ligases, Act Together as Negative Regulators in ABA Signal Transduction Â. Plant Cell, 2010, 22, 1716-1732.	6.6	230
51	Detection of Six Genetically Modified Maize Lines Using Optical Thin-Film Biosensor Chips. Journal of Agricultural and Food Chemistry, 2010, 58, 8490-8494.	5.2	22
52	High-Resolution Mapping of Epigenetic Modifications of the Rice Genome Uncovers Interplay between DNA Methylation, Histone Methylation, and Gene Expression. Plant Cell, 2008, 20, 259-276.	6.6	281
53	Integration of Cytological Features with Molecular and Epigenetic Properties of Rice Chromosome 4. Molecular Plant, 2008, 1, 816-829.	8.3	15
54	Characterization of <i>Arabidopsis</i> and Rice DWD Proteins and Their Roles as Substrate Receptors for CUL4-RING E3 Ubiquitin Ligases. Plant Cell, 2008, 20, 152-167.	6.6	217

William B Terzaghi

#	Article	IF	CITATIONS
55	A new family of plant E3 ubiquitin ligases. Plant Signaling and Behavior, 2008, 3, 1049-1052.	2.4	1
56	Plant Cell Transfection by Electroporation. , 1997, 62, 453-462.		15
57	Activation of the Ethylene Gas Response Pathway in Arabidopsis by the Nuclear Protein ETHYLENE-INSENSITIVE3 and Related Proteins. Cell, 1997, 89, 1133-1144.	28.9	928
58	Intracellular localization of GBF proteins and blue light-induced import of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells. Plant Journal, 1997, 11, 967-982.	5.7	74
59	Photomorphenesis: Seeing the light in plant development. Current Biology, 1995, 5, 466-468.	3.9	33
60	Light-Regulated Transcription. Annual Review of Plant Biology, 1995, 46, 445-474.	14.3	424
61	Sequence of the fourth and fifth Photosystem II Type I chlorophyll a/b-binding protein genes of Arabidopsis thaliana and evidence for the presence of a full complement of the extended CAB gene family. Plant Molecular Biology, 1992, 19, 725-733.	3.9	47
62	Low and High Temperature Limits to PSII. Plant Physiology, 1989, 91, 1494-1500.	4.8	60
63	Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters. Plant Physiology, 1989, 91, 203-212.	4.8	15
64	Manipulating Membrane Fatty Acid Compositions of Soybean Plants. , 1987, , 209-211.		0
65	A System for Manipulating the Membrane Fatty Acid Composition of Soybean Cell Cultures by Adding Tween-Fatty Acid Esters to Their Growth Medium. Plant Physiology, 1986, 82, 771-779.	4.8	16
66	Metabolism of Tween-Fatty Acid Esters by Cultured Soybean Cells. Plant Physiology, 1986, 82, 780-786.	4.8	15
67	Isolation of sodium dependent variants from haploid soybean cell culture. Plant Cell Reports, 1981, 1, 48-51.	5.6	12