William B Terzaghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6001966/publications.pdf

Version: 2024-02-01

101543 110387 5,493 67 36 64 citations g-index h-index papers 67 67 67 6707 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Activation of the Ethylene Gas Response Pathway in Arabidopsis by the Nuclear Protein ETHYLENE-INSENSITIVE3 and Related Proteins. Cell, 1997, 89, 1133-1144.	28.9	928
2	Light-Regulated Transcription. Annual Review of Plant Biology, 1995, 46, 445-474.	14.3	424
3	<i>Arabidopsis</i> noncoding RNA mediates control of photomorphogenesis by red light. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10359-10364.	7.1	317
4	Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two <i>Arabidopsis</i> Ecotypes and Their Reciprocal Hybrids. Plant Cell, 2012, 24, 875-892.	6.6	297
5	High-Resolution Mapping of Epigenetic Modifications of the Rice Genome Uncovers Interplay between DNA Methylation, Histone Methylation, and Gene Expression. Plant Cell, 2008, 20, 259-276.	6.6	281
6	DWA1 and DWA2, Two <i>Arabidopsis</i> DWD Protein Components of CUL4-Based E3 Ligases, Act Together as Negative Regulators in ABA Signal Transduction Â. Plant Cell, 2010, 22, 1716-1732.	6.6	230
7	Characterization of <i> Arabidopsis </i> i> and Rice DWD Proteins and Their Roles as Substrate Receptors for CUL4-RING E3 Ubiquitin Ligases. Plant Cell, 2008, 20, 152-167.	6.6	217
8	<i>Arabidopsis</i> CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and Flowering Time Â. Plant Cell, 2010, 22, 108-123.	6.6	182
9	Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications, 2019, 10, 5279.	12.8	153
10	<i>Arabidopsis</i> SAURs are critical for differential light regulation of the development of various organs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6071-6076.	7.1	127
11	Knockout of two <i>Bna<scp>MAX</scp>1</i> homologs by <scp>CRISPR</scp> /Cas9â€targeted mutagenesis improves plant architecture and increases yield in rapeseed (<i>Brassica napus</i> L.). Plant Biotechnology Journal, 2020, 18, 644-654.	8.3	117
12	Arabidopsis DE-ETIOLATED1 Represses Photomorphogenesis by Positively Regulating Phytochrome-Interacting Factors in the Dark. Plant Cell, 2014, 26, 3630-3645.	6.6	116
13	<i>SLG</i> controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Journal of Experimental Botany, 2016, 67, 4241-4253.	4.8	103
14	A largeâ€scale circular <scp>RNA</scp> profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant Journal, 2019, 98, 697-713.	5.7	99
15	The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2013, 25, 517-534.	6.6	98
16	A PP6-Type Phosphatase Holoenzyme Directly Regulates PIN Phosphorylation and Auxin Efflux in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2497-2514.	6.6	84
17	Genomic basis for light control of plant development. Protein and Cell, 2012, 3, 106-116.	11.0	78
18	Genomic Features and Regulatory Roles of Intermediate-Sized Non-Coding RNAs in Arabidopsis. Molecular Plant, 2014, 7, 514-527.	8.3	77

#	Article	IF	Citations
19	Intracellular localization of GBF proteins and blue light-induced import of GBF2 fusion proteins into the nucleus of cultured Arabidopsis and soybean cells. Plant Journal, 1997, 11, 967-982.	5.7	74
20	WHITE PANICLE1, a Val-tRNA Synthetase Regulating Chloroplast Ribosome Biogenesis in Rice, Is Essential for Early Chloroplast Development. Plant Physiology, 2016, 170, 2110-2123.	4.8	74
21	Genomeâ€wide association study dissects the genetic bases of salt tolerance in maize seedlings. Journal of Integrative Plant Biology, 2019, 61, 658-674.	8.5	72
22	The Maize ABA Receptors ZmPYL8, 9, and 12 Facilitate Plant Drought Resistance. Frontiers in Plant Science, 2018, 9, 422.	3.6	69
23	PHYTOCHROME-INTERACTING FACTORS Interact with the ABA Receptors PYL8 and PYL9 to Orchestrate ABA Signaling in Darkness. Molecular Plant, 2020, 13, 414-430.	8.3	69
24	MYB30 Is a Key Negative Regulator of Arabidopsis Photomorphogenic Development That Promotes PIF4 and PIF5 Protein Accumulation in the Light. Plant Cell, 2020, 32, 2196-2215.	6.6	67
25	UV-B-induced photomorphogenesis in Arabidopsis. Protein and Cell, 2013, 4, 485-492.	11.0	61
26	Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nature Communications, 2020, 11, 1592.	12.8	61
27	Low and High Temperature Limits to PSII. Plant Physiology, 1989, 91, 1494-1500.	4.8	60
28	OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. Plant Molecular Biology, 2017, 95, 345-357.	3.9	60
29	<scp>TSV</scp> , a putative plastidic oxidoreductase, protects rice chloroplasts from cold stress during development by interacting with plastidic thioredoxin Z. New Phytologist, 2017, 215, 240-255.	7.3	58
30	<i>DEFORMED FLORAL ORGAN1</i> (<i>DFO1</i>) regulates floral organ identity by epigenetically repressing the expression of <i>OsMADS58</i> in rice (<i>Oryza sativa</i>). New Phytologist, 2015, 206, 1476-1490.	7.3	56
31	DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Science, 2011, 180, 352-357.	3.6	49
32	TANDEM ZINC-FINGER/PLUS3 Is a Key Component of Phytochrome A Signaling. Plant Cell, 2018, 30, 835-852.	6.6	49
33	The cold response regulator CBF1 promotes <i>Arabidopsis</i> hypocotyl growth at ambient temperatures. EMBO Journal, 2020, 39, e103630.	7.8	49
34	Sequence of the fourth and fifth Photosystem II Type I chlorophyll a/b-binding protein genes of Arabidopsis thaliana and evidence for the presence of a full complement of the extended CAB gene family. Plant Molecular Biology, 1992, 19, 725-733.	3.9	47
35	Enhanced Vitamin C Production Mediated by an ABA-Induced PTP-like Nucleotidase Improves Plant Drought Tolerance in Arabidopsis and Maize. Molecular Plant, 2020, 13, 760-776.	8.3	47
36	Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biology, 2021, 22, 185.	8.8	47

#	Article	IF	Citations
37	Pedigreeâ€based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding. Plant Biotechnology Journal, 2016, 14, 638-648.	8.3	38
38	Photomorphenesis: Seeing the light in plant development. Current Biology, 1995, 5, 466-468.	3.9	33
39	<i>Cis< i>â€regulated alternative splicing divergence and its potential contribution to environmental responses in Arabidopsis. Plant Journal, 2019, 97, 555-570.</i>	5.7	33
40	Arabidopsis DET1 Represses Photomorphogenesis in Part by Negatively Regulating DELLA Protein Abundance in Darkness. Molecular Plant, 2015, 8, 622-630.	8.3	26
41	<i>OsPKp$\hat{l}\pm 1$</i> encodes a plastidic pyruvate kinase that affects starch biosynthesis in the rice endosperm. Journal of Integrative Plant Biology, 2018, 60, 1097-1118.	8.5	26
42	CRISPR/Cas9â€targeted mutagenesis of the <i>BnaA03.BP</i> gene confers semiâ€dwarf and compact architecture to rapeseed (<i>Brassica napus</i> L.). Plant Biotechnology Journal, 2021, 19, 2383-2385.	8.3	26
43	Three BnalAA7 homologs are involved in auxin/brassinosteroid-mediated plant morphogenesis in rapeseed (Brassica napus L.). Plant Cell Reports, 2019, 38, 883-897.	5.6	25
44	Integration of light and temperature signaling pathways in plants. Journal of Integrative Plant Biology, 2022, 64, 393-411.	8.5	25
45	Detection of Six Genetically Modified Maize Lines Using Optical Thin-Film Biosensor Chips. Journal of Agricultural and Food Chemistry, 2010, 58, 8490-8494.	5.2	22
46	Hinge region of <i>Arabidopsis</i> phyA plays an important role in regulating phyA function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11864-E11873.	7.1	22
47	COP1 positively regulates ABA signaling during Arabidopsis seedling growth in darkness by mediating ABA-induced ABI5 accumulation. Plant Cell, 2022, 34, 2286-2308.	6.6	17
48	A System for Manipulating the Membrane Fatty Acid Composition of Soybean Cell Cultures by Adding Tween-Fatty Acid Esters to Their Growth Medium. Plant Physiology, 1986, 82, 771-779.	4.8	16
49	Integrated strategies for increasing rapeseed yield. Trends in Plant Science, 2022, 27, 742-745.	8.8	16
50	Metabolism of Tween-Fatty Acid Esters by Cultured Soybean Cells. Plant Physiology, 1986, 82, 780-786.	4.8	15
51	Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters. Plant Physiology, 1989, 91, 203-212.	4.8	15
52	Plant Cell Transfection by Electroporation. , 1997, 62, 453-462.		15
53	Integration of Cytological Features with Molecular and Epigenetic Properties of Rice Chromosome 4. Molecular Plant, 2008, 1, 816-829.	8.3	15
54	Multifaceted roles of <i>Arabidopsis </i> PP6 phosphatase in regulating cellular signaling and plant development. Plant Signaling and Behavior, 2013, 8, e22508.	2.4	14

#	Article	IF	CITATIONS
55	<i>Arabidopsis</i> PP6 phosphatases dephosphorylate PIF proteins to repress photomorphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20218-20225.	7.1	14
56	Highly efficient genotyping of rice biparental populations by GoldenGate assays based on parental resequencing. Theoretical and Applied Genetics, 2014, 127, 297-307.	3.6	13
57	Multiple photomorphogenic repressors work in concert to regulate Arabidopsis seedling development. Plant Signaling and Behavior, 2015, 10, e1011934.	2.4	13
58	Mutual upregulation of HY5 and TZP in mediating phytochrome A signaling. Plant Cell, 2022, 34, 633-654.	6.6	13
59	Isolation of sodium dependent variants from haploid soybean cell culture. Plant Cell Reports, 1981, 1, 48-51.	5.6	12
60	A Copper(II) Macrocycle Complex for Sensing Biologically Relevant Organic Anions in a Competitive Fluorescence Assay: Oxalate Sensor or Urate Sensor?. ACS Omega, 2020, 5, 19469-19477.	3.5	11
61	The Effects of Earthworms on Fungal Diversity and Community Structure in Farmland Soil With Returned Straw. Frontiers in Microbiology, 2020, 11, 594265.	3.5	9
62	Simultaneous expression of ClopHensor and SLC26A3 reveals the nature of endogenous oxalate transport in CHO cells. Biology Open, 2019, 8 , .	1.2	4
63	A minus-end directed kinesin motor directs gravitropism in Physcomitrella patens. Nature Communications, 2021, 12, 4470.	12.8	4
64	Earthworms accelerate rice straw decomposition and maintenance of soil organic carbon dynamics in rice agroecosystems. PeerJ, 2020, 8, e9870.	2.0	3
65	A new family of plant E3 ubiquitin ligases. Plant Signaling and Behavior, 2008, 3, 1049-1052.	2.4	1
66	Toward Magnetosomes for Breast Cancer Theranostics. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2020, 4, 194-199.	3.4	0
67	Manipulating Membrane Fatty Acid Compositions of Soybean Plants. , 1987, , 209-211.		O