Kankan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6001831/publications.pdf

Version: 2024-02-01

		1039406	1058022	
16	459	9	14	
papers	citations	h-index	g-index	
17	17	17	586	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Biomolecules, 2022, 12, 416.	1.8	11
2	Determining the Effects of Neddylation on Cullinâ€RING Ligase–Dependent Protein Ubiquitination. Current Protocols, 2022, 2, e401.	1.3	5
3	Expression and purification of recombinant human CUL2 from <i>Escherichia coli</i> cells. FASEB Journal, 2021, 35, .	0.2	O
4	Expression and purification of functional recombinant CUL2•RBX1 from E. coli. Scientific Reports, 2021, 11, 11224.	1.6	6
5	Quantitative analyses for effects of neddylation on <scp>CRL2^{VHL}</scp> substrate ubiquitination and degradation. Protein Science, 2021, 30, 2338-2345.	3.1	10
6	Assembly and Regulation of CRL Ubiquitin Ligases. Advances in Experimental Medicine and Biology, 2020, 1217, 33-46.	0.8	43
7	The Possible Role of Complete Loss of Myostatin in Limiting Excessive Proliferation of Muscle Cells (C2C12) via Activation of MicroRNAs. International Journal of Molecular Sciences, 2019, 20, 643.	1.8	8
8	Site-Specific Fat-1 Knock-In Enables Significant Decrease of n-6PUFAs/n-3PUFAs Ratio in Pigs. G3: Genes, Genomes, Genetics, 2018, 8, 1747-1754.	0.8	28
9	Characterization and comparative analysis of immunoglobulin lambda chain diversity in a neonatal porcine model. Veterinary Immunology and Immunopathology, 2018, 195, 84-91.	0.5	4
10	Genetically modified pigs are protected from classical swine fever virus. PLoS Pathogens, 2018, 14, e1007193.	2.1	60
11	Optimization of a CRISPR/Cas9-mediated Knock-in Strategy at the Porcine Rosa26 Locus in Porcine Foetal Fibroblasts. Scientific Reports, 2017, 7, 3036.	1.6	36
12	CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Research, 2017, 26, 799-805.	1.3	73
13	Efficient Generation of Orthologous Point Mutations in Pigs via CRISPR-assisted ssODN-mediated Homology-directed Repair. Molecular Therapy - Nucleic Acids, 2016, 5, e396.	2.3	36
14	Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System. Scientific Reports, 2015, 5, 16623.	1.6	126
15	Early lethality of shRNA-transgenic pigs due to saturation of microRNA pathways. Journal of Zhejiang University: Science B, 2014, 15, 466-473.	1.3	11
16	Miniature Pigs Carrying <i>DMD</i> Exon51 Deletion Suffered from Severe Myocardial Damage, Accelerated Muscle Atrophy and Malabsorption. SSRN Electronic Journal, 0, , .	0.4	0