Nicolas A Dumont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6001755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Satellite Cells and Skeletal Muscle Regeneration. , 2015, 5, 1027-1059.		489
2	Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nature Medicine, 2015, 21, 1455-1463.	15.2	443
3	Intrinsic and extrinsic mechanisms regulating satellite cell function. Development (Cambridge), 2015, 142, 1572-1581.	1.2	364
4	Cellular dynamics in the muscle satellite cell niche. EMBO Reports, 2013, 14, 1062-1072.	2.0	309
5	Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nature Medicine, 2014, 20, 1174-1181.	15.2	309
6	Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nature Medicine, 2016, 22, 897-905.	15.2	226
7	Macrophages Are Key Regulators of Stem Cells during Skeletal Muscle Regeneration and Diseases. Stem Cells International, 2019, 2019, 1-20.	1.2	121
8	EGFR-Aurka Signaling Rescues Polarity and Regeneration Defects in Dystrophin-Deficient Muscle Stem Cells by Increasing Asymmetric Divisions. Cell Stem Cell, 2019, 24, 419-432.e6.	5.2	107
9	Muscle stem cells at a glance. Journal of Cell Science, 2014, 127, 4543-8.	1.2	95
10	Macrophages Protect against Muscle Atrophy and Promote Muscle Recovery in Vivo and in Vitro. American Journal of Pathology, 2010, 176, 2228-2235.	1.9	82
11	Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5246-52.	3.3	68
12	Muscle RANK is a key regulator of Ca ²⁺ storage, SERCA activity, and function of fast-twitch skeletal muscles. American Journal of Physiology - Cell Physiology, 2016, 310, C663-C672.	2.1	51
13	Fibro-adipogenic progenitors in skeletal muscle homeostasis, regeneration and diseases. Open Biology, 2021, 11, 210110.	1.5	45
14	Impact of Inflammation and Anti-inflammatory Modalities on Skeletal Muscle Healing: From Fundamental Research to the Clinic. Physical Therapy, 2017, 97, 807-817.	1.1	43
15	Targeting muscle stem cell intrinsic defects to treat Duchenne muscular dystrophy. Npj Regenerative Medicine, 2016, 1, .	2.5	42
16	Resolvin-D2 targets myogenic cells and improves muscle regeneration in Duchenne muscular dystrophy. Nature Communications, 2021, 12, 6264.	5.8	38
17	Characterizing Satellite Cells and Myogenic Progenitors During Skeletal Muscle Regeneration. Methods in Molecular Biology, 2017, 1560, 179-188.	0.4	31
18	Macrophage Colony-Stimulating Factor–Induced Macrophage Differentiation Promotes Regrowth in Atrophied Skeletal Muscles and C2C12 Myotubes. American Journal of Pathology, 2013, 182, 505-515.	1.9	26

#	Article	IF	CITATIONS
19	Biallelic variants in the transcription factor PAX7 are a new genetic cause of myopathy. Genetics in Medicine, 2019, 21, 2521-2531.	1.1	25
20	Transient neonatal exposure to hyperoxia, an experimental model of preterm birth, leads to skeletal muscle atrophy and fiber type switching. Clinical Science, 2021, 135, 2589-2605.	1.8	1
21	Cover Image, Volume 237, Number 4, April 2022. Journal of Cellular Physiology, 2022, 237, .	2.0	0