Shinsuke Ohnuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/600165/publications.pdf

Version: 2024-02-01

44 papers 914 citations

471509 17 h-index 28 g-index

45 all docs

45 docs citations

45 times ranked

1099 citing authors

#	Article	IF	CITATIONS
1	Intelligent image-activated cell sorting 2.0. Lab on A Chip, 2020, 20, 2263-2273.	6.0	93
2	Vanillin Inhibits Translation and Induces Messenger Ribonucleoprotein (mRNP) Granule Formation in Saccharomyces cerevisiae: Application and Validation of High-Content, Image-Based Profiling. PLoS ONE, 2013, 8, e61748.	2.5	71
3	Single-cell phenomics reveals intra-species variation of phenotypic noise in yeast. BMC Systems Biology, 2013, 7, 54.	3.0	62
4	Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis. Scientific Reports, 2018, 8, 5617.	3.3	57
5	Multiple Functional Domains of the Yeast I,3-β-Glucan Synthase Subunit Fks1p Revealed by Quantitative Phenotypic Analysis of Temperature-Sensitive Mutants. Genetics, 2010, 184, 1013-1024.	2.9	56
6	Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments. Science Advances, 2020, 6, eaba6712.	10.3	56
7	High-Content, Image-Based Screening for Drug Targets in Yeast. PLoS ONE, 2010, 5, e10177.	2.5	48
8	Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data. Molecular Biology of the Cell, 2014, 25, 222-233.	2.1	37
9	High-dimensional single-cell phenotyping reveals extensive haploinsufficiency. PLoS Biology, 2018, 16, e2005130.	5.6	32
10	Single-cell phenomics in budding yeast. Molecular Biology of the Cell, 2015, 26, 3920-3925.	2.1	27
11	Profiling of the effects of antifungal agents on yeast cells based on morphometric analysis. FEMS Yeast Research, 2015, 15, fov040.	2.3	25
12	Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding. G3: Genes, Genomes, Genetics, 2017, 7, 2807-2820.	1.8	25
13	Diversity of Ca2+-Induced Morphology Revealed by Morphological Phenotyping of Ca2+-Sensitive Mutants of Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 817-830.	3.4	24
14	Analysis of the biological activity of a novel 24-membered macrolide JBIR-19 in Saccharomyces cerevisiae by the morphological imaging program CalMorph. FEMS Yeast Research, 2012, 12, 293-304.	2.3	23
15	Unveiling nonessential gene deletions that confer significant morphological phenotypes beyond natural yeast strains. BMC Genomics, 2014, 15, 932.	2.8	21
16	Role of bottom-fermenting brewer's yeast KEX2 in high temperature resistance and poor proliferation at low temperatures. Journal of General and Applied Microbiology, 2010, 56, 297-312.	0.7	20
17	Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae. BMC Genomics, 2018, 19, 149.	2.8	20
18	Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. Journal of Bioscience and Bioengineering, 2017, 123, 183-189.	2.2	17

#	Article	IF	CITATIONS
19	Genome Editing to Generate Sake Yeast Strains with Eight Mutations That Confer Excellent Brewing Characteristics. Cells, 2021, 10, 1299.	4.1	17
20	Genome editing to generate nonfoam-forming sake yeast strains. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1583-1593.	1.3	16
21	Hyperspectral imaging techniques for the characterization of <i><scp>H</scp>aematococcus pluvialis</i> (<scp>C</scp> hlorophyceae). Journal of Phycology, 2014, 50, 939-947.	2.3	14
22	A microfluidic device to acquire high-magnification microphotographs of yeast cells. Cell Division, 2009, 4, 5.	2.4	12
23	Image-Based Monitoring System for Green Algal Haematococcus pluvialis (Chlorophyceae) Cells during Culture. Plant and Cell Physiology, 2013, 54, 1917-1929.	3.1	11
24	Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data. Journal of Bioscience and Bioengineering, 2014, 117, 278-284.	2.2	11
25	Systematic analysis of Ca ²⁺ homeostasis in <i>Saccharomyces cerevisiae</i> based on chemical-genetic interaction profiles. Molecular Biology of the Cell, 2017, 28, 3415-3427.	2.1	10
26	Al-based forecasting of ethanol fermentation using yeast morphological data. Bioscience, Biotechnology and Biochemistry, 2021, 86, 125-134.	1.3	10
27	The budding yeast RSC complex maintains ploidy by promoting spindle pole body insertion. Journal of Cell Biology, 2018, 217, 2445-2462.	5.2	9
28	Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. Lab on A Chip, 2021, 21, 3793-3803.	6.0	9
29	Poacic acid, a βâ€1,3â€glucan–binding antifungal agent, inhibits cellâ€wall remodeling and activates transcriptional responses regulated by the cellâ€wall integrity and highâ€osmolarity glycerol pathways in yeast. FASEB Journal, 2021, 35, e21778.	0.5	9
30	Jerveratrum-Type Steroidal Alkaloids Inhibit \hat{I}^2 -1,6-Glucan Biosynthesis in Fungal Cell Walls. Microbiology Spectrum, 2022, 10, e0087321.	3.0	9
31	Genetic profiling of protein burden and nuclear export overload. ELife, 2020, 9, .	6.0	8
32	Quantification of Cell, Actin, and Nuclear DNA Morphology with High-Throughput Microscopy and CalMorph. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot078667.	0.3	7
33	Implications of maintenance of mother–bud neck size in diverse vital processes of Saccharomyces cerevisiae. Current Genetics, 2019, 65, 253-267.	1.7	7
34	Large-Scale Survey of Intraspecific Fitness and Cell Morphology Variation in a Protoploid Yeast Species. G3: Genes, Genomes, Genetics, 2016, 6, 1063-1071.	1.8	6
35	Defining Functions of Mannoproteins in Saccharomyces cerevisiae by High-Dimensional Morphological Phenotyping. Journal of Fungi (Basel, Switzerland), 2021, 7, 769.	3.5	6
36	High-throughput platform for yeast morphological profiling predicts the targets of bioactive compounds. Npj Systems Biology and Applications, 2022, 8, 3.	3.0	5

3

#	Article	IF	CITATIONS
37	Effects of alloying elements on radiation hardening based on loop formation of electron-irradiated light water reactor pressure vessel model steels. Journal of Nuclear Materials, 2011, 417, 936-939.	2.7	4
38	Morphometric analysis of autophagy-related structures in (i) Saccharomyces cerevisiae (i). Autophagy, 2017, 13, 2104-2110.	9.1	4
39	Simulated microgravity triggers characteristic morphology and stress response in <scp><i>Saccharomyces cerevisiae</i></scp> . Yeast, 2019, 36, 85-97.	1.7	4
40	Profilin is required for Ca2+ homeostasis and Ca2+-modulated bud formation in yeast. Molecular Genetics and Genomics, 2013, 288, 317-328.	2.1	3
41	Assignment of unimodal probability distribution models for quantitative morphological phenotyping. BMC Biology, 2022, 20, 81.	3 . 8	3
42	Image-Based Prediction of Drug Target in Yeast. Methods in Molecular Biology, 2015, 1263, 319-327.	0.9	2
43	Intelligent sortâ€timing prediction for imageâ€activated cell sorting. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2023, 103, 88-97.	1.5	2
44	Single-Cell Phenomics in Budding Yeast: Technologies and Applications. , 2019, , 355-379.		1