valerie Chavagnac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6001519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracking the Lithium and Strontium Isotope Signature of Hydrothermal Plume in the Water Column: A Case Study at the EMSO-Azores Deep-Sea Observatory. Frontiers in Environmental Chemistry, 2022, 3, .	1.6	1
2	Integrating Multidisciplinary Observations in Vent Environments (IMOVE): Decadal Progress in Deep-Sea Observatories at Hydrothermal Vents. Frontiers in Marine Science, 2022, 9, .	2.5	5
3	Fluid Circulation Along an Oceanic Detachment Fault: Insights From Fluid Inclusions in Silicified Brecciated Fault Rocks (Midâ€Atlantic Ridge at 13°20′N). Geochemistry, Geophysics, Geosystems, 2021, 22, .	2.5	5
4	Microbial ecology of the newly discovered serpentinite-hosted Old City hydrothermal field (southwest Indian ridge). ISME Journal, 2021, 15, 818-832.	9.8	29
5	Drake Passage gateway opening and Antarctic Circumpolar Current onset 31ÂMa ago: The message of foraminifera and reconsideration of the Neodymium isotope record. Chemical Geology, 2021, 570, 120171.	3.3	8
6	Behavior of iron isotopes in hydrothermal systems: Beebe and Von Damm vent fields on the Mid-Cayman ultraslow-spreading ridge. Earth and Planetary Science Letters, 2021, 575, 117200.	4.4	4
7	Seawater paleotemperature and paleosalinity evolution in neritic environments of the Mediterranean margin: Insights from isotope analysis of bivalve shells. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 543, 109582.	2.3	9
8	Metal partitioning after in situ filtration at deep-sea vents of the Lucky Strike hydrothermal field (EMSO-Azores, Mid-Atlantic Ridge, 37°N). Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 157, 103204.	1.4	4
9	Seawater 87Sr/86Sr ratios along continental margins: Patterns and processes in open and restricted shelf domains. Chemical Geology, 2020, 558, 119874.	3.3	14
10	Analysis and Design of a Hybrid Optical Fiber Refractometer for Large Dynamic Range Measurements. IEEE Sensors Journal, 2020, 20, 5260-5269.	4.7	2
11	Prokaryote Communities at Active Chimney and <i>In Situ</i> Colonization Devices After a Magmatic Degassing Event (37ŰN MAR, EMSOâ€Azores Deepâ€Sea Observatory). Geochemistry, Geophysics, Geosystems, 2019, 20, 3065-3089.	2.5	6
12	Diffuse Hydrothermal Venting: A Hidden Source of Iron to the Oceans. Frontiers in Marine Science, 2019, 6, .	2.5	17
13	Sr isotope ratios of modern carbonate shells: Good and bad news for chemostratigraphy. Geology, 2018, 46, 1003-1006.	4.4	39
14	Spatial Variations in Vent Chemistry at the Lucky Strike Hydrothermal Field, Midâ€Atlantic Ridge (37°N): Updates for Subseafloor Flow Geometry From the Newly Discovered Capelinhos Vent. Geochemistry, Geophysics, Geosystems, 2018, 19, 4444-4458.	2.5	20
15	Sulfate minerals control dissolved rare earth element flux and Nd isotope signature of buoyant hydrothermal plume (EMSO-Azores, 37°N Mid-Atlantic Ridge). Chemical Geology, 2018, 499, 111-125.	3.3	20
16	Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 2017, 18, 145	5 1-1 482.	94
17	On the early fate of hydrothermal iron at deepâ€sea vents: A reassessment after in situ filtration. Geophysical Research Letters, 2017, 44, 4233-4240.	4.0	18
18	Contrasted hydrothermal activity along the <scp>S</scp> outhâ€ <scp>E</scp> ast <scp>I</scp> ndian <scp>R</scp> idge (130°E–140°E): From crustal to ultramafic circulation. Geochemistry, Geophysics, Geosystems, 2017, 18, 2446-2458.	2.5	9

#	Article	IF	CITATIONS
19	Travertines Associated With Hyperalkaline Springs: Evaluation As A Proxy For Paleoenvironmental Conditions And Sequestration of Atmospheric CO ₂ . Journal of Sedimentary Research, 2016, 86, 1328-1343.	1.6	13
20	First direct observation of coseismic slip and seafloor rupture along a submarine normal fault and implications for fault slip history. Earth and Planetary Science Letters, 2016, 450, 96-107.	4.4	21
21	Endolithic microbial communities in carbonate precipitates from serpentinite-hosted hyperalkaline springs of the Voltri Massif (Ligurian Alps, Northern Italy). Environmental Science and Pollution Research, 2015, 22, 13613-13624.	5.3	42
22	Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermalÂcirculation. Nature Geoscience, 2015, 8, 856-860.	12.9	104
23	Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New) Tj ETQq1 1 0.7843	14 rgBT /	Oygrlock 10
24	Spatial distribution of microbial communities in the shallow submarine alkaline hydrothermal field of the <scp>P</scp> rony <scp>B</scp> ay, <scp>N</scp> ew <scp>C</scp> aledonia. Environmental Microbiology Reports, 2014, 6, 665-674.	2.4	64
25	Calcium, Na, K and Mg Concentrations in Seawater by Inductively Coupled Plasmaâ€Atomic Emission Spectrometry: Applications to IAPSO Seawater Reference Material, Hydrothermal Fluids and Synthetic Seawater Solutions. Geostandards and Geoanalytical Research, 2014, 38, 355-362.	3.1	29
26	Rare earth elements and Nd isotopes tracing water mass mixing and particle-seawater interactions in the SE Atlantic. Geochimica Et Cosmochimica Acta, 2014, 125, 351-372.	3.9	94
27	Sensing Dissolved Methane in Aquatic Environments: An Experiment in the Central Baltic Sea Using Surface Plasmon Resonance. Environmental Science & Technology, 2013, 47, 130716153115002.	10.0	7
28	Origin of cap carbonates: An experimental approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392, 524-533.	2.3	23
29	Characterization of hyperalkaline fluids produced by lowâ€temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites. Geochemistry, Geophysics, Geosystems, 2013, 14, 2496-2522.	2.5	104
30	Mineralogical assemblages forming at hyperalkaline warm springs hosted on ultramafic rocks: A case study of Oman and Ligurian ophiolites. Geochemistry, Geophysics, Geosystems, 2013, 14, 2474-2495.	2.5	58
31	Electro-Deposited PdNi-Si Schottky Barrier Hydrogen Sensors with Improved Time Response. Procedia Engineering, 2012, 47, 37-40.	1.2	1
32	Low power hydrogen sensors using electrodeposited PdNi–Si Schottky diodes. Sensors and Actuators B: Chemical, 2012, 170, 176-181.	7.8	12
33	MoMAR-D: a technological challenge to monitor the dynamics of the Lucky Strike vent ecosystem. ICES Journal of Marine Science, 2011, 68, 416-424.	2.5	27
34	Low power hydrogen sensors using electrodeposited PdNi–Si schottky diodes. Procedia Engineering, 2010, 5, 143-146.	1.2	4
35	Tracing dust input to the Mid-Atlantic Ridge between 14°45′N and 36°14′N: Geochemical and Sr isotope study. Marine Geology, 2008, 247, 208-225.	2.1	27
36	Global environmental effects of large volcanic eruptions on ocean chemistry: Evidence from "hydrothermal―sediments (ODP Leg 185, Site 1149B). Journal of Geophysical Research, 2008, 113, .	3.3	9

VALERIE CHAVAGNAC

#	Article	IF	CITATIONS
37	Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. Comptes Rendus - Palevol, 2008, 7, 145-158.	0.2	65
38	Antiâ€Atlas Moroccan Chain as the source of lithogenicâ€derived micronutrient fluxes to the deep Northeast Atlantic Ocean. Geophysical Research Letters, 2007, 34, .	4.0	15
39	Towards the development of a fossil bone geochemical standard: An inter-laboratory study. Analytica Chimica Acta, 2007, 599, 177-190.	5.4	19
40	Hydrothermal sediments as a potential record of seawater Nd isotope compositions: The Rainbow vent site (36°14′N, Mid-Atlantic Ridge). Paleoceanography, 2006, 21, .	3.0	11
41	Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge. Mineralium Deposita, 2006, 41, 52-67.	4.1	86
42	Sources of REE in sediment cores from the Rainbow vent site (36°14′N, MAR). Chemical Geology, 2005, 216, 329-352.	3.3	64
43	A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos, 2004, 75, 253-281.	1.4	104
44	Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 2002, 17, 1567-1574.	3.0	1,087
45	The behaviour of Nd and Pb isotopes during 2.0 Ga migmatization in paragneisses of the Central Zone of the Limpopo Belt (South Africa and Botswana). Precambrian Research, 2001, 112, 51-86.	2.7	44
46	Multichronometric Evidence for an In Situ Origin of the Ultrahighâ€Pressure Metamorphic Terrane of Dabieshan, China. Journal of Geology, 2001, 109, 633-646.	1.4	78
47	Determination of lead isotope ratios in seawater by quadrupole inductively coupled plasma mass spectrometry after Mg(OH)2 co-precipitation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 363-374.	2.9	34
48	Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 2000, 28, 487-490.	4.4	240
49	Migmatization by metamorphic segregation at subsolidus conditions: implications for Nd–Pb isotope exchange. Lithos, 1999, 46, 275-298.	1.4	27
50	Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Smî—,Nd ages, geochemical characteristics and tectonic implications. Chemical Geology, 1996, 133, 29-51.	3.3	294