
Stephen R Delwiche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6000711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting Protein Composition, Biochemical Properties, and Dough-Handling Properties of Hard Red Winter Wheat Flour by Near-Infrared Reflectance. Cereal Chemistry, 1998, 75, 412-416.	2.2	70
2	Fusarium damage assessment in wheat kernels by Vis/NIR hyperspectral imaging. Sensing and Instrumentation for Food Quality and Safety, 2011, 5, 63-71.	1.5	65
3	Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications. Applied Sciences (Switzerland), 2017, 7, 125.	2.5	63
4	Detection of Scab-Damaged Hard Red Spring Wheat Kernels by Near-Infrared Reflectance. Cereal Chemistry, 2004, 81, 643-649.	2.2	58
5	High-Speed Optical Sorting of Soft Wheat for Reduction of Deoxynivalenol. Plant Disease, 2005, 89, 1214-1219.	1.4	58
6	Spatial assessment of soluble solid contents on apple slices using hyperspectral imaging. Biosystems Engineering, 2017, 159, 10-21.	4.3	51
7	A Graphical Method to Evaluate Spectral Preprocessing in Multivariate Regression Calibrations: Example with Savitzky—Golay Filters and Partial Least Squares Regression. Applied Spectroscopy, 2010, 64, 73-82.	2.2	49
8	Correlation analysis of hyperspectral imagery for multispectral wavelength selection for detection of detection of defects on apples. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 90-96.	1.5	48
9	SAS® Partial Least Squares Regression for Analysis of Spectroscopic Data. Journal of Near Infrared Spectroscopy, 2003, 11, 415-431.	1.5	36
10	Detection of Cracks on Tomatoes Using a Hyperspectral Near-Infrared Reflectance Imaging System. Sensors, 2014, 14, 18837-18850.	3.8	29
11	Starch Waxiness in Hexaploid Wheat (<i>Triticum aestivum L.</i>) by NIR Reflectance Spectroscopy. Journal of Agricultural and Food Chemistry, 2011, 59, 4002-4008.	5.2	25
12	Penetration Depth Measurement of Near-Infrared Hyperspectral Imaging Light for Milk Powder. Sensors, 2016, 16, 441.	3.8	25
13	Single Kernel Near-Infrared Analysis of Tetraploid (Durum) Wheat for Classification of the Waxy Condition. Cereal Chemistry, 2006, 83, 287-292.	2.2	24
14	Visible to SWIR hyperspectral imaging for produce safety and quality evaluation. Sensing and Instrumentation for Food Quality and Safety, 2011, 5, 155-164.	1.5	22
15	Limitations of single kernel near-infrared hyperspectral imaging of soft wheat for milling quality. Biosystems Engineering, 2013, 115, 260-273.	4.3	22
16	Measurement of Inorganic Phosphorus in Soybeans with Near-Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 2006, 54, 6951-6956.	5.2	21
17	Assessing Glycinin (11S) and βâ€Conglycinin (7S) Fractions of Soybean Storage Protein by Nearâ€Infrared Spectroscopy. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 1107-1115.	1.9	20
18	High-speed bichromatic inspection of wheat kernels for mold and color class using high-power pulsed LEDs. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 103-110.	1.5	16

STEPHEN R DELWICHE

#	Article	IF	CITATIONS
19	Repeatability Precision of the Falling Number Procedure Under Standard and Modified Methodologies. Cereal Chemistry, 2015, 92, 177-184.	2.2	16
20	Falling number of soft white wheat by nearâ€infrared spectroscopy: A challenge revisited. Cereal Chemistry, 2018, 95, 469-477.	2.2	15
21	Protein Content of Wheat by Near-Infrared Spectroscopy of Whole Grain: Collaborative Study. Journal of AOAC INTERNATIONAL, 1998, 81, 587-603.	1.5	14
22	Identification of Wheat Lines Possessing the 1AL.1RS or 1BL.1RS Wheat-Rye Translocation by Near-Infrared Reflectance Spectroscopy. Cereal Chemistry, 1999, 76, 255-260.	2.2	14
23	Binary mixtures of waxy wheat and conventional wheat as measured by NIR reflectance. Talanta, 2016, 146, 496-506.	5.5	13
24	Hyperspectral fluorescence imaging for shelf life evaluation of fresh-cut Bell and Jalapeno Pepper. Scientia Horticulturae, 2019, 246, 749-758.	3.6	13
25	Sensory and physicochemical properties of whole wheat salted noodles under different preparations of bran. Journal of Cereal Science, 2020, 96, 103112.	3.7	13
26	Hydrolysis of wheat starch and its effect on the Falling Number procedure:Mathematical model. Biotechnology and Bioengineering, 2002, 79, 768-775.	3.3	11
27	Effect of curvature on hyperspectral reflectance images of cereal seed-sized objects. Biosystems Engineering, 2021, 202, 55-65.	4.3	11
28	Does spatial region of interest (ROI) matter in multispectral and hyperspectral imaging of segmented wheat kernels?. Biosystems Engineering, 2021, 212, 106-114.	4.3	11
29	Hydrolysis of wheat starch and its effect on the Falling Number procedure: experimental observations. Journal of the Science of Food and Agriculture, 1999, 79, 19-24.	3.5	7
30	Enhancement of <italic>Fusarium</italic> head blight detection in free-falling wheat kernels using a bichromatic pulsed LED design. Optical Engineering, 2009, 48, 023602.	1.0	7
31	Influence of Instrument Rigidity and Specimen Geometry on Calculations of Compressive Strength Properties of Wheat Endosperm. Cereal Chemistry, 2012, 89, 24-29.	2.2	7
32	Analysis of Grain Quality at Receival. , 2017, , 513-570.		7
33	Influences of hydrothermal and pressure treatments of wheat bran on the quality and sensory attributes of whole wheat Chinese steamed bread and pancakes. Journal of Cereal Science, 2021, 102, 103356.	3.7	7
34	Collaborative Analysis of Wheat Endosperm Compressive Material Properties. Cereal Chemistry, 2011, 88, 391-396.	2.2	6
35	As the number falls, alternatives to the Hagberg–Perten falling number method: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2105-2117.	11.7	6
36	Measurement of Blend Concentrations of Conventional and Waxy Hard Wheats Using NIR Spectroscopy. Cereal Chemistry, 2014, 91, 358-365.	2.2	5

STEPHEN R DELWICHE

#	Article	IF	CITATIONS
37	Evaluation of a standard reference material for falling number measurement. Cereal Chemistry, 2020, 97, 441-448.	2.2	4
38	Hyperspectral near-infrared reflectance imaging for detection of defect tomatoes. Proceedings of SPIE, 2011, , .	0.8	3
39	Correction of wheat meal falling number to a common barometric pressure at simulated laboratory elevations of 0–1,500Âm. Cereal Chemistry, 2018, 95, 428-435.	2.2	3
40	Is it necessary to manage falling number in the field?. , 2020, 3, e20014.		3
41	Falling Number Sampling Variation Within Trucks at First Point of Sale. Cereal Chemistry, 2017, 94, 480-484.	2.2	2
42	On the use of native corn starch as a standard reference material for falling number. Cereal Chemistry, 2020, 97, 1227-1235.	2.2	2
43	Near infrared hyperspectral imaging of blends of conventional and waxy hard wheats. Journal of Spectral Imaging, 0, , .	0.0	1
44	SAS® Partial Least Squares for Discriminant Analysis. Journal of Near Infrared Spectroscopy, 2008, 16, 31-38.	1.5	0