
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6000594/publications.pdf Version: 2024-02-01

VINCEULI

#	Article	IF	CITATIONS
1	A Lateral Flow Test for <i>Staphylococcus aureus</i> in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angewandte Chemie - International Edition, 2022, 61, e202112346.	7.2	24
2	A Universal DNA Aptamer that Recognizes Spike Proteins of Diverse SARS oVâ€2 Variants of Concern. Chemistry - A European Journal, 2022, 28, .	1.7	30
3	Aptamers from random sequence space: Accomplishments, gaps and future considerations. Analytica Chimica Acta, 2022, 1196, 339511.	2.6	44
4	A Universal DNA Aptamer that Recognizes Spike Proteins of Diverse SARS oVâ€2 Variants of Concern. Chemistry - A European Journal, 2022, 28, e202200524.	1.7	9
5	Investigation of discordant SARS-CoV-2 RT-PCR results using minimally processed saliva. Scientific Reports, 2022, 12, 2806.	1.6	7
6	DNAzyme-Immobilizing Microgel Magnetic Beads Enable Rapid, Specific, Culture-Free, and Wash-Free Electrochemical Quantification of Bacteria in Untreated Urine. ACS Sensors, 2022, 7, 985-994.	4.0	29
7	LISzyme Biosensors: DNAzymes Embedded in an Anti-biofouling Platform for Hands-free Real-Time Detection of Bacterial Contamination in Milk. ACS Nano, 2022, 16, 29-37.	7.3	20
8	A Lateral Flow Test for <i>Staphylococcus aureus</i> in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angewandte Chemie, 2022, 134, .	1.6	2
9	A Smartphone Operated Electrochemical Reader and Actuator that Streamlines the Operation of Electrochemical Biosensors. , 2022, 1, 014601.		88
10	Aptamers for SARSâ€CoVâ€2: Isolation, Characterization, and Diagnostic and Therapeutic Developments. Analysis & Sensing, 2022, 2, .	1.1	17
11	Quantifying DNA damage on paper sensors <i>via</i> controlled template-independent DNA polymerization. Chemical Science, 2022, 13, 6496-6501.	3.7	2
12	One Solution for All: Searching for Universal Aptamers for Constantly Mutating Spike Proteins of SARS oVâ€2. ChemMedChem, 2022, 17, .	1.6	7
13	A DNA Barcodeâ€Based Aptasensor Enables Rapid Testing of Porcine Epidemic Diarrhea Viruses in Swine Saliva Using Electrochemical Readout. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
14	A DNA Barcodeâ€Based Aptasensor Enables Rapid Testing of Porcine Epidemic Diarrhea Viruses in Swine Saliva Using Electrochemical Readout. Angewandte Chemie, 2022, 134, .	1.6	5
15	Selection and Characterization of an RNAâ€Cleaving DNAzyme Activated by <i>Legionella pneumophila</i> . Angewandte Chemie - International Edition, 2021, 60, 4782-4788.	7.2	32
16	Selection and Characterization of an RNAâ€Cleaving DNAzyme Activated by <i>Legionella pneumophila</i> . Angewandte Chemie, 2021, 133, 4832-4838.	1.6	23
17	Biosensing with DNAzymes. Chemical Society Reviews, 2021, 50, 8954-8994.	18.7	193
18	A Highly Specific DNA Aptamer for RNase H2 from <i>Clostridium difficile</i> . ACS Applied Materials & Interfaces, 2021, 13, 9464-9471.	4.0	17

#	Article	IF	CITATIONS
19	Fast-responding functional DNA superstructures for stimuli-triggered protein release. Chemical Science, 2021, 12, 8282-8287.	3.7	13
20	One-pot high-yield synthesis of Pd nanocubes for Pd-Ir nanocube-based immunoassay of nucleocapsid protein from SARS-CoV-2. Analytical and Bioanalytical Chemistry, 2021, 413, 4635-4644.	1.9	7
21	DNAzymes as key components of biosensing systems for the detection of biological targets. Biosensors and Bioelectronics, 2021, 177, 112972.	5.3	44
22	A Syringeâ€Based DNAzyme Sensor for Bacterial Detection. Analysis & Sensing, 2021, 1, 95-100.	1.1	4
23	Functional Nucleic Acids Under Unusual Conditions. ChemBioChem, 2021, 22, 2368-2383.	1.3	10
24	Integrating programmable DNAzymes with electrical readout for rapid and culture-free bacterial detection using a handheld platform. Nature Chemistry, 2021, 13, 895-901.	6.6	69
25	Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Research, 2021, 49, 7267-7279.	6.5	77
26	Highâ€Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wildâ€Type and B.1.1.7 SARSâ€CoVâ€2 in Unprocessed Saliva. Angewandte Chemie, 2021, 133, 24468-24476.	1.6	21
27	A DNA Nanoflowerâ€Assisted Separationâ€Free Nucleic Acid Detection Platform with a Commercial Pregnancy Test Strip. Angewandte Chemie - International Edition, 2021, 60, 24823-24827.	7.2	37
28	Highâ€Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wildâ€Type and B.1.1.7 SARSâ€CoVâ€2 in Unprocessed Saliva. Angewandte Chemie - International Edition, 2021, 60, 24266-24274.	7.2	101
29	Rapid and Specific Imaging of Extracellular Signaling Molecule Adenosine Triphosphate with a Self-Phosphorylating DNAzyme. Journal of the American Chemical Society, 2021, 143, 15084-15090.	6.6	38
30	Targetâ€Dependent Protection of DNA Aptamers against Nucleolytic Digestion Enables Signalâ€On Biosensing with Toeholdâ€Mediated Rolling Circle Amplification. Chemistry - A European Journal, 2021, 27, 14543-14549.	1.7	4
31	Functional Nucleic Acids for Pathogenic Bacteria Detection. Accounts of Chemical Research, 2021, 54, 3540-3549.	7.6	54
32	DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective. ACS Nano, 2021, 15, 13943-13969.	7.3	121
33	Targetâ€Mediated 5'â€Exonuclease Digestion of DNA Aptamers with RecJ to Modulate Rolling Circle Amplification for Biosensing. ChemBioChem, 2021, , .	1.3	3
34	Facile Synthesis of Pd-Ir Nanocubes for Biosensing. Frontiers in Chemistry, 2021, 9, 775220.	1.8	2
35	A DNA Switch for Detecting Single Nucleotide Polymorphism within a Long DNA Sequence Under Denaturing Conditions. Chemistry - A European Journal, 2020, 26, 592-596.	1.7	3
36	An Unintentional Discovery of a Fluorogenic DNA Probe for Ribonucleaseâ€I. ChemBioChem, 2020, 21, 464-468.	1.3	12

#	Article	IF	CITATIONS
37	A DNA Switch for Detecting Single Nucleotide Polymorphism within a Long DNA Sequence Under Denaturing Conditions. Chemistry - A European Journal, 2020, 26, 568-568.	1.7	0
38	Highly Sensitive RNAâ€Cleaving DNAzyme Sensors from Surfaceâ€ŧo‣urface Product Enrichment. ChemBioChem, 2020, 21, 632-637.	1.3	8
39	Biosensors Made of Synthetic Functional Nucleic Acids Toward Better Human Health. Analytical Chemistry, 2020, 92, 327-344.	3.2	60
40	Selection and applications of synthetic functional DNAs for bacterial detection. TrAC - Trends in Analytical Chemistry, 2020, 124, 115785.	5.8	39
41	Engineering Micrometer‣ized DNA Tracks for High‣peed DNA Synthesis and Biosensing. Angewandte Chemie, 2020, 132, 23147-23151.	1.6	3
42	Evolution of a highly functional circular DNA aptamer in serum. Nucleic Acids Research, 2020, 48, 10680-10690.	6.5	24
43	Engineering Micrometer‣ized DNA Tracks for High‣peed DNA Synthesis and Biosensing. Angewandte Chemie - International Edition, 2020, 59, 22947-22951.	7.2	10
44	Rücktitelbild: Engineering Micrometerâ€Sized DNA Tracks for Highâ€Speed DNA Synthesis and Biosensing (Angew. Chem. 51/2020). Angewandte Chemie, 2020, 132, 23548-23548.	1.6	0
45	Aptamer-Based Biosensors for Environmental Monitoring. Frontiers in Chemistry, 2020, 8, 434.	1.8	138
46	Ribbon of DNA Lattice on Gold Nanoparticles for Selective Drug Delivery to Cancer Cells. Angewandte Chemie, 2020, 132, 14692-14700.	1.6	5
47	Ribbon of DNA Lattice on Gold Nanoparticles for Selective Drug Delivery to Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 14584-14592.	7.2	56
48	An Effective Method for Quantifying RNA Expression of IbsCâ€ 5 ibC, a Type I Toxinâ€Antitoxin System in <i>Escherichia coli</i> . ChemBioChem, 2020, 21, 3120-3130.	1.3	2
49	In Vitro Selection of New DNA Aptamers for Human Vascular Endothelial Growth Factor 165. ChemBioChem, 2020, 21, 2029-2036.	1.3	4
50	Inâ€Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. Angewandte Chemie, 2020, 132, 7780-7784.	1.6	6
51	Inâ€Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. Angewandte Chemie - International Edition, 2020, 59, 7706-7710.	7.2	49
52	A Multiâ€component Allâ€DNA Biosensing System Controlled by a DNAzyme. Angewandte Chemie - International Edition, 2020, 59, 10401-10405.	7.2	45
53	A Multiâ€component Allâ€ÐNA Biosensing System Controlled by a DNAzyme. Angewandte Chemie, 2020, 132, 10487-10491.	1.6	2
54	Circular Nucleic Acids: Discovery, Functions and Applications. ChemBioChem, 2020, 21, 1547-1566.	1.3	43

#	Article	IF	CITATIONS
55	Proteinâ€Mediated Suppression of Rolling Circle Amplification for Biosensing with an Aptamerâ€Containing DNA Primer. Chemistry - A European Journal, 2020, 26, 5085-5092.	1.7	27
56	Advances in functional nucleic acid based paper sensors. Journal of Materials Chemistry B, 2020, 8, 3213-3230.	2.9	45
57	Rù⁄4cktitelbild: Inâ€Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing (Angew. Chem. 20/2020). Angewandte Chemie, 2020, 132, 8042-8042.	1.6	0
58	In Vitro Selection of Circular DNA Aptamers for Biosensing Applications. Angewandte Chemie, 2019, 131, 8097-8101.	1.6	8
59	A DNAzymeâ€Based Colorimetric Paper Sensor for <i>Helicobacter pylori</i> . Angewandte Chemie, 2019, 131, 10012-10016.	1.6	29
60	A DNAzymeâ€Based Colorimetric Paper Sensor for <i>Helicobacter pylori</i> . Angewandte Chemie - International Edition, 2019, 58, 9907-9911.	7.2	115
61	In Vitro Selection of Circular DNA Aptamers for Biosensing Applications. Angewandte Chemie - International Edition, 2019, 58, 8013-8017.	7.2	69
62	Unraveling Determinants of Affinity Enhancement in Dimeric Aptamers for a Dimeric Protein. Scientific Reports, 2019, 9, 17824.	1.6	23
63	Investigation of RNA structure-switching aptamers in tunable sol–gel-derived materials. Journal of Sol-Gel Science and Technology, 2019, 89, 234-243.	1.1	2
64	DNAzymes: Synthetic Enzymes Made of DNA. , 2019, , 1-16.		0
65	A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angewandte Chemie - International Edition, 2018, 57, 4549-4553.	7.2	73
66	Frontispiece: DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification. Chemistry - A European Journal, 2018, 24, .	1.7	0
67	Serendipitous Discovery of a Guanine-rich DNA Molecule with a Highly Stable Structure in Urea. Scientific Reports, 2018, 8, 1935.	1.6	11
68	DNAzymes: Selected for Applications. Small Methods, 2018, 2, 1700319.	4.6	116
69	A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angewandte Chemie, 2018, 130, 4639-4643.	1.6	21
70	Selection and characterization of DNA aptamers for detection of glutamate dehydrogenase from Clostridium difficile. Biochimie, 2018, 145, 151-157.	1.3	20
71	DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification. Chemistry - A European Journal, 2018, 24, 4473-4479.	1.7	21
72	Discovery of Butyrylcholinesterase-Activated Near-Infrared Fluorogenic Probe for Live-Cell and <i>In Vivo</i> Imaging. ACS Sensors, 2018, 3, 2118-2128.	4.0	67

#	Article	IF	CITATIONS
73	Graphene-DNAzyme-based fluorescent biosensor for Escherichia coli detection. MRS Communications, 2018, 8, 687-694.	0.8	40
74	Selfâ€Assembled Functional DNA Superstructures as Highâ€Density and Versatile Recognition Elements for Printed Paper Sensors. Angewandte Chemie, 2018, 130, 12620-12623.	1.6	19
75	Selfâ€Assembled Functional DNA Superstructures as Highâ€Density and Versatile Recognition Elements for Printed Paper Sensors. Angewandte Chemie - International Edition, 2018, 57, 12440-12443.	7.2	58
76	Colorimetric Detection of Uranyl Using a Litmus Test. Frontiers in Chemistry, 2018, 6, 332.	1.8	14
77	Targetâ€Induced Catalytic Assembly of Yâ€Shaped DNA and Its Application for Inâ€Situ Imaging of MicroRNAs. Angewandte Chemie - International Edition, 2018, 57, 9739-9743.	7.2	118
78	Targetâ€Induced Catalytic Assembly of Yâ€Shaped DNA and Its Application for Inâ€Situ Imaging of MicroRNAs. Angewandte Chemie, 2018, 130, 9887-9891.	1.6	17
79	RNA Protection is Effectively Achieved by Pullulan Film Formation. ChemBioChem, 2017, 18, 502-505.	1.3	22
80	Automating multi-step paper-based assays using integrated layering of reagents. Lab on A Chip, 2017, 17, 943-950.	3.1	20
81	Optical biosensors utilizing graphene and functional DNA molecules. Journal of Materials Research, 2017, 32, 2973-2983.	1.2	7
82	Sol–Gelâ€Derived Biohybrid Materials Incorporating Longâ€Chain DNA Aptamers. Angewandte Chemie - International Edition, 2017, 56, 10686-10690.	7.2	18
83	A DNAzyme Feedback Amplification Strategy for Biosensing. Angewandte Chemie, 2017, 129, 6238-6242.	1.6	37
84	A DNAzyme Feedback Amplification Strategy for Biosensing. Angewandte Chemie - International Edition, 2017, 56, 6142-6146.	7.2	126
85	A Printed Multicomponent Paper Sensor for Bacterial Detection. Scientific Reports, 2017, 7, 12335.	1.6	82
86	Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes. Accounts of Chemical Research, 2017, 50, 2273-2283.	7.6	228
87	Detection of DNA Amplicons of Polymerase Chain Reaction Using Litmus Test. Scientific Reports, 2017, 7, 3110.	1.6	15
88	Electrophoretic Concentration and Electrical Lysis of Bacteria in a Microfluidic Device Using a Nanoporous Membrane. Micromachines, 2017, 8, 45.	1.4	20
89	In Vitro Selection of DNA Aptamers that Binds Geniposide. Molecules, 2017, 22, 383.	1.7	9
90	RiboFACSeq: A new method for investigating metabolic and transport pathways in bacterial cells by combining a riboswitch-based sensor, fluorescence-activated cell sorting and next-generation sequencing. PLoS ONE, 2017, 12, e0188399.	1.1	5

#	Article	IF	CITATIONS
91	Sol–Gelâ€Đerived Biohybrid Materials Incorporating Longâ€Chain DNA Aptamers. Angewandte Chemie, 2017, 129, 10826-10830.	1.6	2
92	Integrating Deoxyribozymes into Colorimetric Sensing Platforms. Sensors, 2016, 16, 2061.	2.1	41
93	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie, 2016, 128, 2759-2763.	1.6	38
94	Topological DNA Assemblies Containing Identical or Fraternal Twins. ChemBioChem, 2016, 17, 1142-1145.	1.3	3
95	A Catalytic DNA Activated by a Specific Strain of Bacterial Pathogen. Angewandte Chemie, 2016, 128, 2477-2480.	1.6	23
96	A Catalytic DNA Activated by a Specific Strain of Bacterial Pathogen. Angewandte Chemie - International Edition, 2016, 55, 2431-2434.	7.2	91
97	Programming a topologically constrained DNA nanostructure into a sensor. Nature Communications, 2016, 7, 12074.	5.8	67
98	Colorimetric Detection of Bacteria Using Litmus Test. Journal of Visualized Experiments, 2016, , .	0.2	3
99	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie - International Edition, 2016, 55, 2709-2713.	7.2	113
100	In vitro selection of RNA-cleaving DNAzymes for bacterial detection. Methods, 2016, 106, 66-75.	1.9	44
101	Simple and ultrastable all-inclusive pullulan tablets for challenging bioassays. Chemical Science, 2016, 7, 2342-2346.	3.7	36
102	Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent <i>Clostridium difficile</i> Infection. JAMA - Journal of the American Medical Association, 2016, 315, 142.	3.8	511
103	A Quarter Century of In Vitro Selection. Journal of Molecular Evolution, 2015, 81, 137-139.	0.8	10
104	Evolution of an Enzyme from a Noncatalytic Nucleic Acid Sequence. Scientific Reports, 2015, 5, 11405.	1.6	15
105	Optimal DNA Templates for Rolling Circle Amplification Revealed by In Vitro Selection. Chemistry - A European Journal, 2015, 21, 8069-8074.	1.7	25
106	Biosensing by Tandem Reactions of Structure Switching, Nucleolytic Digestion, and DNA Amplification of a DNA Assembly. Angewandte Chemie - International Edition, 2015, 54, 9637-9641.	7.2	63
107	An Efficient Catalytic DNA that Cleaves L-RNA. PLoS ONE, 2015, 10, e0126402.	1.1	18
108	Fluorescence Activation Imaging of Cytochrome c Released from Mitochondria Using Aptameric Nanosensor. Journal of the American Chemical Society, 2015, 137, 982-989.	6.6	163

#	Article	IF	CITATIONS
109	Patterned Paper Sensors Printed with Longâ€Chain DNA Aptamers. Chemistry - A European Journal, 2015, 21, 7369-7373.	1.7	66
110	Integrating graphene oxide, functional DNA and nucleic-acid-manipulating strategies for amplified biosensing. TrAC - Trends in Analytical Chemistry, 2015, 74, 120-129.	5.8	33
111	Printed Paper Sensors for Serum Lactate Dehydrogenase using Pullulan-Based Inks to Immobilize Reagents. Analytical Chemistry, 2015, 87, 9288-9293.	3.2	66
112	Sequence Mutation and Structural Alteration Transform a Noncatalytic DNA Sequence into an Efficient RNA-Cleaving DNAzyme. Journal of Molecular Evolution, 2015, 81, 245-253.	0.8	9
113	Highly Specific Recognition of Breast Tumors by an RNA-Cleaving Fluorogenic DNAzyme Probe. Analytical Chemistry, 2015, 87, 569-577.	3.2	48
114	Determination of Mercury(II) by Fluorescence Using Deoxyribonucleic Acid Stabilized Silver Nanoclusters. Analytical Letters, 2015, 48, 281-290.	1.0	10
115	Examination of Bacterial Inhibition Using a Catalytic DNA. PLoS ONE, 2014, 9, e115640.	1.1	5
116	Translating Bacterial Detection by DNAzymes into a Litmus Test. Angewandte Chemie, 2014, 126, 13013-13016.	1.6	45
117	Turning Tryptophanase into Odor-Generating Biosensors. Angewandte Chemie - International Edition, 2014, 53, 2620-2622.	7.2	11
118	Translating Bacterial Detection by DNAzymes into a Litmus Test. Angewandte Chemie - International Edition, 2014, 53, 12799-12802.	7.2	188
119	Arrest of Rolling Circle Amplification by Proteinâ€Binding DNA Aptamers. Chemistry - A European Journal, 2014, 20, 2420-2424.	1.7	36
120	Pullulan Encapsulation of Labile Biomolecules to Give Stable Bioassay Tablets. Angewandte Chemie - International Edition, 2014, 53, 6155-6158.	7.2	75
121	Lysozyme-stabilized gold nanoclusters as a novel fluorescence probe for cyanide recognition. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 77-80.	2.0	68
122	A General Strategy to Create RNA Aptamer Sensors Using "Regulated―Graphene Oxide Adsorption. ACS Applied Materials & Interfaces, 2014, 6, 21806-21812.	4.0	30
123	Engineering interlocking DNA rings with weak physical interactions. Nature Communications, 2014, 5, 4279.	5.8	48
124	An inkjet-printed bioactive paper sensor that reports ATP through odour generation. Analyst, The, 2014, 139, 4775.	1.7	10
125	Artificial Riboswitch Selection: A FACS-Based Approach. Methods in Molecular Biology, 2014, 1111, 57-75.	0.4	4
126	Fluorescence Analysis of the Properties of Structure-Switching DNA Aptamers Entrapped in Sol–Gel-Derived Silica Materials. Chemistry of Materials, 2014, 26, 1896-1904	3.2	14

#	Article	IF	CITATIONS
127	A Graphene-Based Biosensing Platform Based on the Release of DNA Probes and Rolling Circle Amplification. ACS Nano, 2014, 8, 5564-5573.	7.3	139
128	A novel phosphorescence sensor for Co ²⁺ ion based on Mnâ€doped ZnS quantum dots. Luminescence, 2014, 29, 151-157.	1.5	41
129	A Dual Reporter System for Detecting RNA Interactions in Bacterial Cells. ChemBioChem, 2014, 15, 2703-2709.	1.3	0
130	Construction and Application of Riboswitch-Based Sensors That Detect Metabolites Within Bacterial Cells. Methods in Molecular Biology, 2014, 1103, 177-197.	0.4	4
131	Small Size, Big Impact: Bacterial Functional Nucleic Acids and Their Applications. , 2014, , 309-323.		1
132	Therapeutic Peptides: New Arsenal Against Drug Resistant Pathogens. Current Pharmaceutical Design, 2014, 20, 771-792.	0.9	13
133	Evolving Wonder-RNAs in a Test Tube. Journal of Molecular Evolution, 2013, 77, 197-198.	0.8	2
134	Exploration of Structure-Switching in the Design of Aptamer Biosensors. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 69-92.	0.6	9
135	A novel far-visible and near-infrared pH probe for monitoring near-neutral physiological pH changes: imaging in live cells. Journal of Materials Chemistry B, 2013, 1, 4281.	2.9	80
136	Exploring Intermolecular Interactions of a Substrate Binding Protein Using a Riboswitch-Based Sensor. Chemistry and Biology, 2013, 20, 1502-1512.	6.2	16
137	Phosphorescence detection of L-ascorbic acid with surface-attached N-acetyl-L-cysteine and L-cysteine Mn doped ZnS quantum dots. Talanta, 2013, 116, 794-800.	2.9	23
138	A Highly Efficient Molecular Cloning Platform that Utilises a Small Bacterial Toxin Gene. ChemBioChem, 2013, 14, 733-738.	1.3	10
139	Turning a Kinase Deoxyribozyme into a Sensor. Journal of the American Chemical Society, 2013, 135, 7181-7186.	6.6	54
140	Quality Control Certification of RNA Aptamerâ€Based Detection. ChemBioChem, 2013, 14, 987-992.	1.3	8
141	A Sensitive DNA Enzyme-Based Fluorescent Assay for Bacterial Detection. Biomolecules, 2013, 3, 563-577.	1.8	59
142	Assessing the Amount of Quadruplex Structures Present within G2-Tract Synthetic Random-Sequence DNA Libraries. PLoS ONE, 2013, 8, e64131.	1.1	13
143	Artificially Created Nucleic Acids and Peptides/Proteins in Chemical Biology. Journal of Nucleic Acids, 2013, 2013, 1-2.	0.8	3
144	Detection of Bacteria Using Fluorogenic DNAzymes. Journal of Visualized Experiments, 2012, , .	0.2	14

#	Article	IF	CITATIONS
145	Stabilizing Structure-Switching Signaling RNA Aptamers by Entrapment in Sol–Gel Derived Materials for Solid-Phase Assays. Journal of the American Chemical Society, 2012, 134, 10998-11005.	6.6	47
146	Developing Fluorogenic RNA-Cleaving DNAzymes for Biosensing Applications. Methods in Molecular Biology, 2012, 848, 395-418.	0.4	13
147	Synthesis and evaluation of glucosamine-6-phosphate analogues as activators of glmS riboswitch. Tetrahedron, 2012, 68, 9405-9412.	1.0	17
148	Lighting Up RNA-Cleaving DNAzymes for Biosensing. Journal of Nucleic Acids, 2012, 2012, 1-8.	0.8	24
149	Multiplexed paper test strip for quantitative bacterial detection. Analytical and Bioanalytical Chemistry, 2012, 403, 1567-1576.	1.9	194
150	Characterization of non-8–17 sequences uncovers structurally diverse RNA-cleaving deoxyribozymes. Molecular BioSystems, 2011, 7, 2139.	2.9	16
151	Functional Nucleic Acids for Fluorescence-Based Biosensing Applications. Springer Series on Fluorescence, 2011, , 201-221.	0.8	4
152	Surface Immobilization of Structure-Switching DNA Aptamers on Macroporous Solâ~'Gel-Derived Films for Solid-Phase Biosensing Applications. Analytical Chemistry, 2011, 83, 957-965.	3.2	40
153	Enhancing Sensitivity and Selectivity of Long-Period Grating Sensors using Structure-Switching Aptamers Bound to Gold-Doped Macroporous Silica Coatings. Analytical Chemistry, 2011, 83, 7984-7991.	3.2	27
154	Controlling biotinylation of microgels and modeling streptavidin uptake. Colloid and Polymer Science, 2011, 289, 659-666.	1.0	8
155	Fluorogenic DNAzyme Probes as Bacterial Indicators. Angewandte Chemie - International Edition, 2011, 50, 3751-3754.	7.2	189
156	Modulation of DNAâ€Modified Goldâ€Nanoparticle Stability in Salt with Concatemeric Singleâ€Stranded DNAs for Colorimetric Bioassay Development. Chemistry - A European Journal, 2011, 17, 2052-2056.	1.7	16
157	Functional Nucleic Acids as Molecular Recognition Elements for Small Organic and Biological Molecules. Current Organic Chemistry, 2011, 15, 557-575.	0.9	25
158	Advancements in using reporter DNAzymes for identifying pathogenic bacteria at speed and with convenience. Future Microbiology, 2011, 6, 973-976.	1.0	13
159	A Versatile Endoribonuclease Mimic Made of DNA: Characteristics and Applications of the 8–17 RNAâ€Cleaving DNAzyme. ChemBioChem, 2010, 11, 866-879.	1.3	127
160	Influence of Cleavage Site on Global Folding of an RNA leaving DNAzyme. ChemBioChem, 2010, 11, 1710-1719.	1.3	23
161	A General Approach to the Construction of Structure witching Reporters from RNA Aptamers. Angewandte Chemie - International Edition, 2010, 49, 7938-7942.	7.2	53
162	Using a Riboswitch Sensor to Examine Coenzyme B12 Metabolism and Transport in E. coli. Chemistry and Biology, 2010, 17, 756-765.	6.2	72

#	Article	IF	CITATIONS
163	The Structural Diversity of Deoxyribozymes. Molecules, 2010, 15, 6269-6284.	1.7	14
164	Decoding Toxicity. Journal of Biological Chemistry, 2010, 285, 41627-41636.	1.6	18
165	Probing the Function of Nucleotides in the Catalytic Cores of the 8â^'17 and 10â^'23 DNAzymes by Abasic Nucleotide and C3 Spacer Substitutions. Biochemistry, 2010, 49, 7553-7562.	1.2	81
166	Photoluminescence model for a hybrid aptamer-GaAs optical biosensor. Journal of Applied Physics, 2010, 107, 104702.	1.1	21
167	A Complex RNA-Cleaving DNAzyme That Can Efficiently Cleave a Pyrimidine–Pyrimidine Junction. Journal of Molecular Biology, 2010, 400, 689-701.	2.0	18
168	DNAzyme-mediated catalysis with only guanosine and cytidine nucleotides. Nucleic Acids Research, 2009, 37, 413-420.	6.5	80
169	Identification of a Toxic Peptide through Bidirectional Expression of Small RNAs. ChemBioChem, 2009, 10, 238-241.	1.3	5
170	Colorimetric Sensing by Using Allostericâ€DNAzymeâ€Coupled Rolling Circle Amplification and a Peptide Nucleic Acid–Organic Dye Probe. Angewandte Chemie - International Edition, 2009, 48, 3512-3515.	7.2	128
171	Biologically Inspired Synthetic Enzymes Made from DNA. Chemistry and Biology, 2009, 16, 311-322.	6.2	253
172	Incorporation of an inducible nucleotide analog into DNA by DNA polymerases. Bioorganic and Medicinal Chemistry, 2009, 17, 2859-2863.	1.4	3
173	Detection of DNA using bioactive paper strips. Chemical Communications, 2009, , 6640.	2.2	104
174	Characterization of an RNA-Cleaving Deoxyribozyme with Optimal Activity at pH 5. Biochemistry, 2009, 48, 7383-7391.	1.2	25
175	A genotype-to-phenotype map of in vitro selected RNA-cleaving DNAzymes: implications for accessing the target phenotype. Nucleic Acids Research, 2009, 37, 3545-3557.	6.5	14
176	Enzymatic Cleavage of Nucleic Acids on Gold Nanoparticles: A Generic Platform for Facile Colorimetric Biosensors. Small, 2008, 4, 810-816.	5.2	136
177	A FACSâ€Based Approach to Engineering Artificial Riboswitches. ChemBioChem, 2008, 9, 1906-1911.	1.3	67
178	Design of Gold Nanoparticleâ€Based Colorimetric Biosensing Assays. ChemBioChem, 2008, 9, 2363-2371.	1.3	701
179	Rolling Circle Amplification: Applications in Nanotechnology and Biodetection with Functional Nucleic Acids. Angewandte Chemie - International Edition, 2008, 47, 6330-6337.	7.2	506
180	DNA Aptamer Folding on Gold Nanoparticles:  From Colloid Chemistry to Biosensors. Journal of the American Chemical Society, 2008, 130, 3610-3618.	6.6	352

#	Article	IF	CITATIONS
181	Paper-Based Bioassays Using Gold Nanoparticle Colorimetric Probes. Analytical Chemistry, 2008, 80, 8431-8437.	3.2	305
182	A Deoxyribozyme with a Novel Guanine Quartet-Helix Pseudoknot Structure. Journal of Molecular Biology, 2008, 375, 960-968.	2.0	20
183	Recent Progress in Nucleic Acid Aptamer-Based Biosensors and Bioassays. Sensors, 2008, 8, 7050-7084.	2.1	131
184	Microgel-Based Inks for Paper-Supported Biosensing Applications. Biomacromolecules, 2008, 9, 935-941.	2.6	136
185	In vitro selection of small RNA-cleaving deoxyribozymes that cleave pyrimidine–pyrimidine junctions. Nucleic Acids Research, 2008, 36, 4768-4777.	6.5	47
186	Sequence-function relationships provide new insight into the cleavage site selectivity of the 8-17 RNA-cleaving deoxyribozyme. Nucleic Acids Research, 2008, 36, 1472-1481.	6.5	92
187	Enzymatic manipulations of DNA oligonucleotides on microgel: towards development of DNA–microgel bioassays. Chemical Communications, 2007, , 4459.	2.2	43
188	Characterization of pH3DZ1 — An RNA-cleaving deoxyribozyme with optimal activity at pH 3. Canadian Journal of Chemistry, 2007, 85, 261-273.	0.6	20
189	Optimization of Cladding-Structure-Modified Long-Period-Grating Refractive-Index Sensors. Journal of Lightwave Technology, 2007, 25, 372-380.	2.7	36
190	Entrapment of Fluorescence Signaling DNA Enzymes in Solâ^'Gel-Derived Materials for Metal Ion Sensing. Analytical Chemistry, 2007, 79, 3494-3503.	3.2	60
191	Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chemical Communications, 2007, , 3729.	2.2	170
192	Multiple Occurrences of an Efficient Self-Phosphorylating Deoxyribozyme Motif. Biochemistry, 2007, 46, 2198-2204.	1.2	19
193	Adsorption and Covalent Coupling of ATP-Binding DNA Aptamers onto Cellulose. Langmuir, 2007, 23, 1300-1302.	1.6	85
194	Simple Fluorescent Sensors Engineered with Catalytic DNA â€~MgZ' Based on a Non-Classic Allosteric Design. PLoS ONE, 2007, 2, e1224.	1.1	47
195	Simple and Rapid Colorimetric Biosensors Based on DNA Aptamer and Noncrosslinking Gold Nanoparticle Aggregation. ChemBioChem, 2007, 8, 727-731.	1.3	208
196	Isolation of DNA Aptamers for CDPâ€Ribitol Synthase, and Characterization of Their Inhibitory and Structural Properties. ChemBioChem, 2007, 8, 2052-2057.	1.3	8
197	Understanding DNA-based catalysis one molecule at a time. Nature Chemical Biology, 2007, 3, 753-754.	3.9	4
198	Label-Free Fiber Optic Biosensors With Enhanced Sensitivity. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1691-1696.	1.9	18

#	Article	IF	CITATIONS
199	Deoxyribozymes: Catalytically Active DNA Molecules. , 2006, , 228-261.		3
200	Phosphoester-transfer mechanism of an RNA-cleaving acidic deoxyribozyme revealed by radioactivity tracking and enzymatic digestion. Chemical Communications, 2006, , 2359.	2.2	11
201	Quenching of Fluorophore-Labeled DNA Oligonucleotides by Divalent Metal Ions:Â Implications for Selection, Design, and Applications of Signaling Aptamers and Signaling Deoxyribozymes. Journal of the American Chemical Society, 2006, 128, 780-790.	6.6	86
202	Long-period grating refractive index sensor with a modified cladding structure for large operational range and high sensitivity. Applied Optics, 2006, 45, 6142.	2.1	38
203	Revitalization of Six Abandoned Catalytic DNA Species Reveals a Common Three-way Junction Framework and Diverse Catalytic Cores. Journal of Molecular Biology, 2006, 357, 748-754.	2.0	40
204	Nucleic acid aptamers and enzymes as sensors. Current Opinion in Chemical Biology, 2006, 10, 272-281.	2.8	409
205	Evolution of High-Branching Deoxyribozymes from a Catalytic DNA with a Three-Way Junction. Chemistry and Biology, 2006, 13, 1061-1069.	6.2	24
206	Catalysis and Rational Engineering of trans-Acting pH6DZ1, an RNA-Cleaving and Fluorescence-Signaling Deoxyribozyme with a Four-Way Junction Structure. ChemBioChem, 2006, 7, 1343-1348.	1.3	49
207	Solid-Phase Enzyme Activity Assay Utilizing an Entrapped Fluorescence-Signaling DNA Aptamer. Angewandte Chemie - International Edition, 2006, 45, 3295-3299.	7.2	64
208	DNA Polymerization on Gold Nanoparticles through Rolling Circle Amplification: Towards Novel Scaffolds for Three-Dimensional Periodic Nanoassemblies. Angewandte Chemie - International Edition, 2006, 45, 2409-2413.	7.2	124
209	Small-Molecule Screening Made Simple for a Difficult Target with a Signaling Nucleic Acid Aptamer that Reports on Deaminase Activity. Angewandte Chemie - International Edition, 2006, 45, 5648-5652.	7.2	52
210	Characterization of long RNA-cleaving deoxyribozymes with short catalytic cores: the effect of excess sequence elements on the outcome of in vitro selection. Nucleic Acids Research, 2006, 34, 2445-2454.	6.5	14
211	Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates. Nucleic Acids Research, 2006, 35, 401-405.	6.5	59
212	Structure-switching allosteric deoxyribozymes. Analytica Chimica Acta, 2005, 534, 41-51.	2.6	75
213	In Vitro Selection of Structureâ€ S witching Signaling Aptamers. Angewandte Chemie - International Edition, 2005, 44, 1061-1065.	7.2	354
214	A DNA-Protein Nanoengine for "On-Demand―Release and Precise Delivery of Molecules. Angewandte Chemie - International Edition, 2005, 44, 5464-5467.	7.2	70
215	In Vitro Selection of Structureâ€Switching Signaling Aptamers. Angewandte Chemie, 2005, 117, 1085-1089.	1.6	68
216	Diverse Evolutionary Trajectories Characterize a Community of RNA-Cleaving Deoxyribozymes: A Case Study into the Population Dynamics of In Vitro Selection. Journal of Molecular Evolution, 2005, 61, 192-206.	0.8	26

#	Article	IF	CITATIONS
217	Complexation of well-controlled low-molecular weight polyelectrolytes with antisense oligonucleotides. Colloid and Polymer Science, 2005, 283, 1197-1205.	1.0	8
218	Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme. Nucleic Acids Research, 2005, 33, 7164-7175.	6.5	33
219	Secondary-Structure Characterization of Two Proficient Kinase Deoxyribozymesâ€. Biochemistry, 2005, 44, 3765-3774.	1.2	30
220	Characterizing the Secondary Structure and Identifying Functionally Essential Nucleotides of pH6DZ1, a Fluorescence-Signaling and RNA-Cleaving Deoxyribozyme. Biochemistry, 2005, 44, 12066-12076.	1.2	34
221	Aptamers with fluorescence-signaling properties. Methods, 2005, 37, 16-25.	1.9	161
222	Entrapment of Fluorescent Signaling DNA Aptamers in Solâ^'Gel-Derived Silica. Analytical Chemistry, 2005, 77, 4300-4307.	3.2	81
223	Signaling Aptamers for Monitoring Enzymatic Activity and for Inhibitor Screening. ChemBioChem, 2004, 5, 1139-1144.	1.3	84
224	Structure-Switching Signaling Aptamers: Transducing Molecular Recognition into Fluorescence Signaling. Chemistry - A European Journal, 2004, 10, 1868-1876.	1.7	272
225	Dinucleotide Junction Cleavage Versatility of 8-17 Deoxyribozyme. Chemistry and Biology, 2004, 11, 57-67.	6.2	175
226	Tracing Sequence Diversity Change of RNA-Cleaving Deoxyribozymes under Increasing Selection Pressure during in Vitro Selectionâ€. Biochemistry, 2004, 43, 9695-9707.	1.2	58
227	Ligating DNA with DNA. Journal of the American Chemical Society, 2004, 126, 3454-3460.	6.6	100
228	Assemblage of Signaling DNA Enzymes with Intriguing Metal-Ion Specificities and pH Dependences. Journal of the American Chemical Society, 2003, 125, 7539-7545.	6.6	150
229	An Efficient RNA-Cleaving DNA Enzyme that Synchronizes Catalysis with Fluorescence Signaling. Journal of the American Chemical Society, 2003, 125, 412-420.	6.6	201
230	Structure-Switching Signaling Aptamers. Journal of the American Chemical Society, 2003, 125, 4771-4778.	6.6	916
231	Sequence Diversity, Metal Specificity, and Catalytic Proficiency of Metal-Dependent Phosphorylating DNA Enzymes. Chemistry and Biology, 2002, 9, 507-517.	6.2	119
232	Capping DNA with DNAâ€. Biochemistry, 2000, 39, 3106-3114.	1.2	131
233	In vitro selection of deoxyribozymes with DNA capping activity. Nucleic Acids Symposium Series, 1999, 42, 237-238.	0.3	2
234	Deoxyribozymes: New players in the ancient game of biocatalysis. Current Opinion in Structural Biology, 1999, 9, 315-323.	2.6	143

#	ARTICLE	IF	CITATIONS
235	Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2â€~-Hydroxyl Group. Journal of the American Chemical Society, 1999, 121, 5364-5372.	6.6	479
236	DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chemistry and Biology, 1998, 5, 505-517.	6.2	903
237	The modus operandi of a DNA enzyme: enhancement of substrate basicity. Chemistry and Biology, 1998, 5, 1-12.	6.2	44
238	Toward an Efficient DNAzymeâ€. Biochemistry, 1997, 36, 5589-5599.	1.2	175
239	Recognition of Anionic Porphyrins by DNA Aptamersâ€. Biochemistry, 1996, 35, 6911-6922.	1.2	265
240	A catalytic DNA for porphyrin metallation. Nature Structural and Molecular Biology, 1996, 3, 743-747.	3.6	315
241	A DNA Nanoflower Assisted Separationâ€free Nucleic Acid Detection Platform with Commercial Pregnancy Test Strip. Angewandte Chemie, 0, , .	1.6	2
242	Aptamers for SARS oVâ€2: Isolation, Characterization, and Diagnostic and Therapeutic Developments. Analysis & Sensing, 0, , .	1.1	5