
Charlotte Bevan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6000302/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The AF1 and AF2 Domains of the Androgen Receptor Interact with Distinct Regions of SRC1. Molecular and Cellular Biology, 1999, 19, 8383-8392.	1.1	371
2	Impact of Analytical Bias in Metabonomic Studies of Human Blood Serum and Plasma. Analytical Chemistry, 2006, 78, 4307-4318.	3.2	226
3	Prostate cancer cell malignancy via modulation of HIF- $\hat{l}\pm$ pathway with isoflurane and propofol alone and in combination. British Journal of Cancer, 2014, 111, 1338-1349.	2.9	203
4	The Role of Androgen Receptor Mutations in Prostate Cancer Progression. Current Genomics, 2009, 10, 18-25.	0.7	147
5	Circulating microRNAs as potential new biomarkers for prostate cancer. British Journal of Cancer, 2013, 108, 1925-1930.	2.9	130
6	Androgen-regulated processing of the oncomir MiR-27a, which targets Prohibitin in prostate cancer. Human Molecular Genetics, 2012, 21, 3112-3127.	1.4	127
7	Light-triggered enzymatic reactions in nested vesicle reactors. Nature Communications, 2018, 9, 1093.	5.8	125
8	Hey1, a Mediator of Notch Signaling, Is an Androgen Receptor Corepressor. Molecular and Cellular Biology, 2005, 25, 1425-1436.	1.1	120
9	Single-molecule amplification-free multiplexed detection of circulating microRNA cancer biomarkers from serum. Nature Communications, 2021, 12, 3515.	5.8	107
10	Role of Androgen Receptor Variants in Prostate Cancer: Report from the 2017 Mission Androgen Receptor Variants Meeting. European Urology, 2018, 73, 715-723.	0.9	105
11	Analysis of the Steroid Receptor Coactivator 1 (SRC1)-CREB Binding Protein Interaction Interface and Its Importance for the Function of SRC1. Molecular and Cellular Biology, 2001, 21, 39-50.	1.1	98
12	Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16711-16716.	3.3	98
13	Androgens target prohibitin to regulate proliferation of prostate cancer cells. Oncogene, 2004, 23, 2996-3004.	2.6	96
14	Visualising Androgen Receptor Activity in Male and Female Mice. PLoS ONE, 2013, 8, e71694.	1.1	80
15	Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene, 2007, 26, 1757-1768.	2.6	74
16	Mechanisms of androgen receptor activation in advanced prostate cancer: differential co-activator recruitment and gene expression. Oncogene, 2008, 27, 2941-2950.	2.6	73
17	Revising the role of the androgen receptor in breast cancer. Journal of Molecular Endocrinology, 2014, 52, R257-R265.	1.1	72
18	Characterization of the Two Coactivator-interacting Surfaces of the Androgen Receptor and Their Relative Role in Transcriptional Control* Journal of Biological Chemistry, 2002, 277, 49230-49237	1.6	71

#	Article	IF	CITATIONS
19	Mechanisms of androgen receptor signalling via steroid receptor coactivator-1 in prostate Endocrine-Related Cancer, 2004, 11, 117-130.	1.6	71
20	Functional Analysis of Six Androgen Receptor Mutations Identified in Patients with Partial Androgen Insensitivity Syndrome. Human Molecular Genetics, 1996, 5, 265-273.	1.4	69
21	Midazolam and Dexmedetomidine Affect Neuroglioma and Lung Carcinoma Cell Biology <i>In Vitro</i> and <i>In Vivo</i> . Anesthesiology, 2018, 129, 1000-1014.	1.3	65
22	Phenotypic diversity in siblings with partial androgen insensitivity syndrome. Archives of Disease in Childhood, 1997, 76, 529-531.	1.0	60
23	FUS/TLS Is a Novel Mediator of Androgen-Dependent Cell-Cycle Progression and Prostate Cancer Growth. Cancer Research, 2011, 71, 914-924.	0.4	59
24	Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene, 2019, 38, 5700-5724.	2.6	59
25	Allosteric Conversation in the Androgen Receptor Ligand-Binding Domain Surfaces. Molecular Endocrinology, 2012, 26, 1078-1090.	3.7	58
26	The Role of Coactivators in Steroid Hormone Action. Experimental Cell Research, 1999, 253, 349-356.	1.2	57
27	The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nature Communications, 2021, 12, 4068.	5.8	57
28	Mini-review: Foldosome regulation of androgen receptor action in prostate cancer. Molecular and Cellular Endocrinology, 2013, 369, 52-62.	1.6	52
29	Manipulating prohibitin levels provides evidence for an in vivo role in androgen regulation of prostate tumours. Endocrine-Related Cancer, 2009, 16, 1157-1169.	1.6	50
30	Amplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis. Analytical Chemistry, 2016, 88, 8091-8098.	3.2	50
31	Metabolic signatures of malignant progression in prostate epithelial cells. International Journal of Biochemistry and Cell Biology, 2011, 43, 1002-1009.	1.2	47
32	Notch Signaling: A Potential Therapeutic Target in Prostate Cancer. Current Cancer Drug Targets, 2008, 8, 566-580.	0.8	44
33	Repression of Androgen Receptor Activity by HEYL, a Third Member of the Hairy/Enhancer-of-split-related Family of Notch Effectors. Journal of Biological Chemistry, 2011, 286, 17796-17808.	1.6	37
34	Cytoreductive treatment strategies for de novo metastatic prostate cancer. Nature Reviews Clinical Oncology, 2020, 17, 168-182.	12.5	36
35	Role of the HSP90-Associated Cochaperone p23 in Enhancing Activity of the Androgen Receptor and Significance for Prostate Cancer. Molecular Endocrinology, 2012, 26, 1694-1706.	3.7	35
36	Androgen Receptor Is Targeted to Distinct Subcellular Compartments in Response to Different Therapeutic Antiandrogens. Clinical Cancer Research, 2004, 10, 7392-7401.	3.2	31

#	Article	IF	CITATIONS
37	Interplay between steroid signalling and microRNAs: implications for hormone-dependent cancers. Endocrine-Related Cancer, 2014, 21, R409-R429.	1.6	31
38	Wide variation in androgen receptor dysfunction in complete androgen insensitivity syndrome. Journal of Steroid Biochemistry and Molecular Biology, 1997, 61, 19-26.	1.2	30
39	Androgen Receptor Signalling in Prostate Cancer: The Functional Consequences of Acetylation. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-7.	3.0	30
40	Eighty Years of Targeting Androgen Receptor Activity in Prostate Cancer: The Fight Goes on. Cancers, 2021, 13, 509.	1.7	29
41	Consensus Statement on Circulating Biomarkers for Advanced Prostate Cancer. European Urology Oncology, 2018, 1, 151-159.	2.6	28
42	MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. British Journal of Cancer, 2022, 126, 502-513.	2.9	28
43	The coâ€chaperone p23 promotes prostate cancer motility and metastasis. Molecular Oncology, 2015, 9, 295-308.	2.1	27
44	Cell-lineage specificity and role of AP-1 in the prostate fibroblast androgen receptor cistrome. Molecular and Cellular Endocrinology, 2017, 439, 261-272.	1.6	27
45	HEY1 Leu94Met gene polymorphism dramatically modifies its biological functions. Oncogene, 2010, 29, 411-420.	2.6	24
46	WOMEN IN CANCER THEMATIC REVIEW: New roles for nuclear receptors in prostate cancer. Endocrine-Related Cancer, 2016, 23, T85-T108.	1.6	23
47	Targeting androgen signaling in ILC2s protects from IL-33–driven lung inflammation, independently of KLRG1. Journal of Allergy and Clinical Immunology, 2022, 149, 237-251.e12.	1.5	23
48	Phosphorylation of activating transcription factor-2 (ATF-2) within the activation domain is a key determinant of sensitivity to tamoxifen in breast cancer. Breast Cancer Research and Treatment, 2014, 147, 295-309.	1.1	21
49	Reducing prohibitin increases histone acetylation, and promotes androgen independence in prostate tumours by increasing androgen receptor activation by adrenal androgens. Oncogene, 2012, 31, 4588-4598.	2.6	20
50	Circulating nucleic acids as biomarkers of prostate cancer. Biomarkers in Medicine, 2013, 7, 867-877.	0.6	20
51	Circulating peripheral blood mononuclear cells exhibit altered miRNA expression patterns in pancreatic cancer. Expert Review of Molecular Diagnostics, 2013, 13, 425-430.	1.5	20
52	Identification of transcription factor co-regulators that drive prostate cancer progression. Scientific Reports, 2020, 10, 20332.	1.6	19
53	The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells. Oncogenesis, 2017, 6, e333-e333.	2.1	18
54	Lipid profiling of complex biological mixtures by liquid chromatography/mass spectrometry using a novel scanning quadrupole dataâ€independent acquisition strategy. Rapid Communications in Mass Spectrometry, 2017, 31, 1599-1606.	0.7	18

#	Article	IF	CITATIONS
55	Mechanisms of androgen receptor repression in prostate cancer. Biochemical Society Transactions, 2006, 34, 1124-1127.	1.6	17
56	A novel role for GSK3β as a modulator of Drosha microprocessor activity and MicroRNA biogenesis. Nucleic Acids Research, 2017, 45, gkw938.	6.5	17
57	High fat diet causes distinct aberrations in the testicular proteome. International Journal of Obesity, 2020, 44, 1958-1969.	1.6	17
58	Transcription associated cyclin-dependent kinases as therapeutic targets for prostate cancer. Oncogene, 2022, 41, 3303-3315.	2.6	16
59	Coordinated AR and microRNA regulation in prostate cancer. Asian Journal of Urology, 2020, 7, 233-250.	0.5	14
60	A Suite of Activity-Based Probes To Dissect the KLK Activome in Drug-Resistant Prostate Cancer. Journal of the American Chemical Society, 2021, 143, 8911-8924.	6.6	14
61	Proteomic analysis of proteins regulated by TRPS1 transcription factor in DU145 prostate cancer cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 575-582.	1.1	12
62	Crosstalk between Long Non Coding RNAs, microRNAs and DNA Damage Repair in Prostate Cancer: New Therapeutic Opportunities?. Cancers, 2022, 14, 755.	1.7	12
63	Roles of steroid receptors in the lung and COVID-19. Essays in Biochemistry, 2021, 65, 1025-1038.	2.1	11
64	Antiandrogens Act as Selective Androgen Receptor Modulators at the Proteome Level in Prostate Cancer Cells*. Molecular and Cellular Proteomics, 2015, 14, 1201-1216.	2.5	10
65	Liver X Receptors and Male (In)fertility. International Journal of Molecular Sciences, 2019, 20, 5379.	1.8	10
66	Follicleâ€stimulating hormone promotes growth of human prostate cancer cell lineâ€derived tumor xenografts. FASEB Journal, 2021, 35, e21464.	0.2	9
67	Androgen receptor in prostate cancer: cause or cure?. Trends in Endocrinology and Metabolism, 2005, 16, 395-397.	3.1	8
68	Novel Trifluoromethylated Enobosarm Analogues with Potent Antiandrogenic Activity <i>In Vitro</i> and Tissue Selectivity <i>In Vivo</i> . Molecular Cancer Therapeutics, 2018, 17, 1846-1858.	1.9	7
69	Interaction between AR signalling and CRKL bypasses casodex inhibition in prostate cancer. Cellular Signalling, 2010, 22, 1874-1881.	1.7	6
70	Engineered repressors are potent inhibitors of androgen receptor activity. Oncotarget, 2014, 5, 959-969.	0.8	6
71	A non-coding RNA balancing act: miR-346-induced DNA damage is limited by the long non-coding RNA NORAD in prostate cancer. Molecular Cancer, 2022, 21, 82.	7.9	6
72	In Vivo Imaging of Nuclear Receptor Transcriptional Activity. Methods in Molecular Biology, 2016, 1443, 203-217.	0.4	3

5

#	Article	IF	CITATIONS
73	Advances in genetics: widening our understanding of prostate cancer. F1000Research, 2016, 5, 1512.	0.8	2
74	WOMEN IN CANCER PROFILE: A gender agenda?. Endocrine-Related Cancer, 2016, 23, P5-P8.	1.6	1
75	A circulating miRNA signature to help prognosticate at prostate cancer diagnosis Journal of Clinical Oncology, 2017, 35, 108-108.	0.8	1
76	Consensus statement on circulating biomarkers for advanced prostate cancer Journal of Clinical Oncology, 2018, 36, 299-299.	0.8	1
77	Circulating Nucleic Acids as Prostate Cancer Biomarkers. , 2016, , 557-585.		Ο
78	Breaking down walls in prostate cancer with the MURAL collection of patient-derived xenografts. Nature Communications, 2021, 12, 5504.	5.8	0
79	A signature of miRNAs in the blood to help prognosticate prostate cancer at the time of diagnosis Journal of Clinical Oncology, 2017, 35, e16558-e16558.	0.8	Ο
80	MiR-1271-5p: An AR-modulatory microRNA with a distinct role in prostate cancer progression, through SND1 and MORF4L1 interaction Journal of Clinical Oncology, 2019, 37, e16562-e16562.	0.8	0