Francis A O'neill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5999658/publications.pdf Version: 2024-02-01

	47006	29157
25,664	47	104
citations	h-index	g-index
112	112	28421
docs citations	times ranked	citing authors
	25,664 citations 112 docs citations	25,664 47 citations h-index 112 112 112 docs citations 112 times ranked

#	Article	IF	CITATIONS
1	Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511, 421-427.	27.8	6,934
2	LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 2015, 47, 291-295.	21.4	3,905
3	Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 2011, 43, 969-976.	21.4	1,758
4	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	21.4	1,395
5	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American Journal of Human Genetics, 2015, 97, 576-592.	6.2	1,098
6	Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia. American Journal of Human Genetics, 2003, 73, 34-48.	6.2	1,072
7	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
8	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
9	Genetic Variation in the 6p22.3 Gene DTNBP1, the Human Ortholog of the Mouse Dysbindin Gene, Is Associated with Schizophrenia. American Journal of Human Genetics, 2002, 71, 337-348.	6.2	786
10	Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases. American Journal of Human Genetics, 2014, 95, 535-552.	6.2	569
11	A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nature Genetics, 1995, 11, 287-293.	21.4	448
12	Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nature Genetics, 2015, 47, 1385-1392.	21.4	431
13	Genome-Wide Association Identifies a Common Variant in the Reelin Gene That Increases the Risk of Schizophrenia Only in Women. PLoS Genetics, 2008, 4, e28.	3.5	302
14	Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Molecular Psychiatry, 2009, 14, 774-785.	7.9	235
15	Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Molecular Psychiatry, 2013, 18, 708-712.	7.9	216
16	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 2016, 19, 420-431.	14.8	204
17	Replication of association between schizophrenia and ZNF804A in the Irish Case–Control Study of Schizophrenia sample. Molecular Psychiatry, 2010, 15, 29-37.	7.9	191
18	Support for a possible schizophrenia vulnerability locus in region 5q22–31 in Irish families. Molecular Psychiatry, 1997, 2, 148-155.	7.9	187

#	Article	IF	CITATIONS
19	Additional support for schizophrenia linkage on chromosomes 6 and 8: A multicenter study. , 1996, 67, 580-594.		166
20	Evidence that duplications of 22q11.2 protect against schizophrenia. Molecular Psychiatry, 2014, 19, 37-40.	7.9	163
21	Relationship Between a High-Risk Haplotype in the <i>DTNBP1</i> (Dysbindin) Gene and Clinical Features of Schizophrenia. American Journal of Psychiatry, 2005, 162, 1824-1832.	7.2	148
22	AKT1 Is Associated with Schizophrenia Across Multiple Symptom Dimensions in the Irish Study of High Density Schizophrenia Families. Biological Psychiatry, 2008, 63, 449-457.	1.3	148
23	Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1: Part 2. American Journal of Medical Genetics Part A, 1994, 54, 44-50.	2.4	145
24	Resemblance of psychotic symptoms and syndromes in affected sibling pairs from the Irish Study of High-Density Schizophrenia Families: evidence for possible etiologic heterogeneity. American Journal of Psychiatry, 1997, 154, 191-198.	7.2	137
25	Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families Molecular Psychiatry, 2003, 8, 499-510.	7.9	127
26	A schizophrenia locus may be located in region 10p15-p11. , 1998, 81, 296-301.		126
27	Clinical Features of Schizophrenia and Linkage to Chromosomes 5q, 6p, 8p, and 10p in the Irish Study of High-Density Schizophrenia Families. American Journal of Psychiatry, 2000, 157, 402-408.	7.2	125
28	Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Molecular Psychiatry, 2002, 7, 542-559.	7.9	124
29	Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nature Communications, 2017, 8, 14774.	12.8	114
30	Variants in the catechol-o-methyltransferase (COMT) gene are associated with schizophrenia in Irish high-density families. Molecular Psychiatry, 2004, 9, 962-967.	7.9	113
31	Group art therapy as an adjunctive treatment for people with schizophrenia: multicentre pragmatic randomised trial. BMJ: British Medical Journal, 2012, 344, e846-e846.	2.3	99
32	Occurrence and co-occurrence of hallucinations by modality in schizophrenia-spectrum disorders. Psychiatry Research, 2017, 252, 154-160.	3.3	96
33	No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Molecular Psychiatry, 2004, 9, 777-783.	7.9	95
34	No Major Schizophrenia Locus Detected on Chromosome 1q in a Large Multicenter Sample. Science, 2002, 296, 739-741.	12.6	85
35	Common variant at 16p11.2 conferring risk of psychosis. Molecular Psychiatry, 2014, 19, 108-114.	7.9	85
36	CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Human Molecular Genetics, 2014, 23, 1669-1676.	2.9	82

#	Article	IF	CITATIONS
37	Significant correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. Molecular Psychiatry, 2007, 12, 958-965.	7.9	77
38	Implication of a Rare Deletion at Distal 16p11.2 in Schizophrenia. JAMA Psychiatry, 2013, 70, 253.	11.0	69
39	GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Molecular Psychiatry, 2011, 16, 1117-1129.	7.9	67
40	No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinucleotide repeat polymorphism and schizophrenia in Irish families. Psychiatry Research, 1998, 81, 111-116.	3.3	66
41	Exclusion of Linkage Between Schizophrenia and the D2 Dopamine Receptor Gene Region of Chromosome 11q in 112 Irish Multiplex Families. Archives of General Psychiatry, 1993, 50, 205.	12.3	65
42	Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Molecular Psychiatry, 2009, 14, 786-795.	7.9	61
43	Genome-Wide Association Study of Multiplex Schizophrenia Pedigrees. American Journal of Psychiatry, 2012, 169, 963-973.	7.2	61
44	Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137. Neuroscience Letters, 2013, 532, 33-38.	2.1	61
45	Epigenome-Wide Association Study for Parkinson's Disease. NeuroMolecular Medicine, 2014, 16, 845-855.	3.4	57
46	Multicenter linkage study of schizophrenia loci on chromosome 22q. Molecular Psychiatry, 2004, 9, 784-795.	7.9	55
47	Sibling Correlation of Deficit Syndrome in the Irish Study of High-Density Schizophrenia Families. American Journal of Psychiatry, 2000, 157, 1071-1076.	7.2	50
48	Novel Linkage to Chromosome 20p Using Latent Classes of Psychotic Illness in 270 Irish High-Density Families. Biological Psychiatry, 2008, 64, 121-127.	1.3	50
49	Interleukin 3 and schizophrenia: the impact of sex and family history. Molecular Psychiatry, 2007, 12, 273-282.	7.9	49
50	Haplotypes spanning SPEC2, PDZ-GEF2 and ACSL6 genes are associated with schizophrenia. Human Molecular Genetics, 2006, 15, 3329-3342.	2.9	46
51	Group art therapy as an adjunctive treatment for people with schizophrenia: a randomised controlled trial (MATISSE) Health Technology Assessment, 2012, 16, iii-iv, 1-76.	2.8	45
52	Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry, 2022, 79, 260.	11.0	44
53	Molecular Validation of the Schizophrenia Spectrum. Schizophrenia Bulletin, 2014, 40, 60-65.	4.3	41
54	Is the histidine triad nucleotide-binding protein 1 (HINT1) gene a candidate for schizophrenia?. Schizophrenia Research, 2008, 106, 200-207.	2.0	40

#	Article	IF	CITATIONS
55	Schizophrenia genetic variants are not associated with intelligence. Psychological Medicine, 2013, 43, 2563-2570.	4.5	40
56	Meta-analysis of Positive and Negative Symptoms Reveals Schizophrenia Modifier Genes: Table 1 Schizophrenia Bulletin, 2016, 42, 279-287.	4.3	40
57	Polymorphisms in SLC6A4, PAH, GABRB3, and MAOB and modification of psychotic disorder features. Schizophrenia Research, 2009, 109, 94-97.	2.0	38
58	An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk factor for psychosis. Human Molecular Genetics, 2014, 23, 3316-3326.	2.9	37
59	Apoptotic Engulfment Pathway and Schizophrenia. PLoS ONE, 2009, 4, e6875.	2.5	35
60	The MATISSE study: a randomised trial of group art therapy for people with schizophrenia. BMC Psychiatry, 2010, 10, 65.	2.6	35
61	An analysis into childhood burns. Burns, 1984, 11, 117-124.	1.9	34
62	Examination of new and reported data of the DRD3/MscI polymorphism: no support for the proposed association with schizophrenia. Molecular Psychiatry, 1998, 3, 150-155.	7.9	32
63	Marker-to-marker linkage disequilibrium on chromosomes 5q, 6p, and 8p in Irish high-density schizophrenia pedigrees. , 1999, 88, 29-33.		32
64	Genetic Variation in the α7 Nicotinic Acetylcholine Receptor is Associated with Delusional Symptoms in Alzheimer's Disease. NeuroMolecular Medicine, 2008, 10, 377-384.	3.4	32
65	The dystrobrevin binding protein 1 (DTNBP1) gene is associated with schizophrenia in the Irish Case Control Study of Schizophrenia (ICCSS) sample. Schizophrenia Research, 2009, 115, 245-253.	2.0	31
66	Â7 Nicotinic acetylcholine receptor gene and reduced risk of Alzheimer's disease. Journal of Medical Genetics, 2007, 45, 244-248.	3.2	29
67	A genome-wide scan for modifier loci in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 589-595.	1.7	29
68	Variability in Working Memory Performance Explained by Epistasis vs Polygenic Scores in the <i>ZNF804A</i> Pathway. JAMA Psychiatry, 2014, 71, 778.	11.0	28
69	Catechol-O-methyltransferase and the clinical features of psychosis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 935-938.	1.7	27
70	A region of 35 kb containing the trace amine associate receptor 6 (TAAR6) gene is associated with schizophrenia in the Irish study of high-density schizophrenia families. Molecular Psychiatry, 2007, 12, 842-853.	7.9	26
71	Association study of CSF2RB with schizophrenia in Irish family and case – control samples. Molecular Psychiatry, 2008, 13, 930-938.	7.9	25
72	No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study. PLoS Genetics, 2016, 12, e1006343.	3.5	24

#	Article	IF	CITATIONS
73	Two non-synonymous markers in PTPN21, identified by genome-wide association study data-mining and replication, are associated with schizophrenia. Schizophrenia Research, 2011, 131, 43-51.	2.0	22
74	Dynamic changes of functional segregation and integration in vulnerability and resilience to schizophrenia. Human Brain Mapping, 2019, 40, 2200-2211.	3.6	21
75	Alternative Factor Models and Heritability of the Short Leyton Obsessional Inventory—Children's Version. Journal of Abnormal Child Psychology, 2010, 38, 921-934.	3.5	20
76	Interaction between interleukin 3 and dystrobrevin-binding protein 1 in schizophrenia. Schizophrenia Research, 2008, 106, 208-217.	2.0	19
77	Association study of <i>SNAP25</i> and schizophrenia in Irish family and case–control samples. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 663-674.	1.7	19
78	Genome-wide gene pathway analysis of psychotic illness symptom dimensions based on a new schizophrenia-specific model of the OPCRIT. Schizophrenia Research, 2015, 164, 181-186.	2.0	19
79	Association and expression study of synapsin III and schizophrenia. Neuroscience Letters, 2009, 465, 248-251.	2.1	18
80	No evidence that runs of homozygosity are associated with schizophrenia in an Irish genome-wide association dataset. Schizophrenia Research, 2014, 154, 79-82.	2.0	18
81	Age at first birth in women is genetically associated with increased risk of schizophrenia. Scientific Reports, 2018, 8, 10168.	3.3	17
82	Neurotrophin-3 gene polymorphisms and schizophrenia. Psychiatric Genetics, 1996, 6, 183-186.	1.1	16
83	Longitudinal study of interpersonal dependency in female twins. British Journal of Psychiatry, 1998, 172, 154-158.	2.8	16
84	MEGF10 Association with Schizophrenia. Biological Psychiatry, 2008, 63, 441-448.	1.3	16
85	Clinical symptomatology and the psychosis risk gene ZNF804A. Schizophrenia Research, 2010, 122, 273-275.	2.0	16
86	Genetic variation in the serotonin 2A receptor and suicidal ideation in a sample of 270 Irish highâ€density schizophrenia families. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 411-417.	1.7	15
87	Enhancing Psychosis-Spectrum Nosology Through an International Data Sharing Initiative. Schizophrenia Bulletin, 2018, 44, S460-S467.	4.3	15
88	Association Study of 167 Candidate Genes for Schizophrenia Selected by a Multi-Domain Evidence-Based Prioritization Algorithm and Neurodevelopmental Hypothesis. PLoS ONE, 2013, 8, e67776.	2.5	15
89	Association between the 5q31.1 gene neurogenin1 and schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 207-214.	1.7	14
90	Association analysis of the <i>PIP4K2A</i> gene on chromosome 10p12 and schizophrenia in the Irish study of high density schizophrenia families (ISHDSF) and the Irish case–control study of schizophrenia (ICCSS). American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 323-331.	1.7	11

#	Article	IF	CITATIONS
91	The trace amine associated receptor (TAAR6) gene is not associated with schizophrenia in the Irish Case-Control Study of Schizophrenia (ICCSS) sample. Schizophrenia Research, 2009, 107, 249-254.	2.0	11
92	Analysis of epistasis in linked regions in the Irish study of high-density schizophrenia families. American Journal of Medical Genetics Part A, 2001, 105, 266-270.	2.4	10
93	<i>FBXL21</i> association with schizophrenia in irish family and case–control samples. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1231-1237.	1.7	10
94	Concordance between chart review and structured interview assessments of schizophrenic symptoms. Comprehensive Psychiatry, 2012, 53, 275-279.	3.1	10
95	Evidence for public health on novel psychoactive substance use: a mixed-methods study. Public Health Research, 2019, 7, 1-150.	1.3	10
96	A Diagnostic System Using Broad Categories With Clinically Relevant Specifiers: Lessons for Icd-11. International Journal of Social Psychiatry, 2010, 56, 326-335.	3.1	7
97	No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Molecular Psychiatry, 2004, 9, 729-729.	7.9	6
98	The Influence of Genotype Information on Psychiatrists' Treatment Recommendations: More Experienced Clinicians Know Better What to Ignore. Value in Health, 2017, 20, 126-131.	0.3	6
99	Comprehensive Gene-Based Association Study of a Chromosome 20 Linked Region Implicates Novel Risk Loci for Depressive Symptoms in Psychotic Illness. PLoS ONE, 2011, 6, e21440.	2.5	6
100	Language and crossed finger localization in patients with schizophrenia. Journal of the International Neuropsychological Society, 2007, 13, 893-7.	1.8	5
101	No association of dysbindin with symptom factors of schizophrenia in an Irish case–control sample. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 700-705.	1.7	5
102	Physician-Specific Maximum Acceptable Risk in Personalized Medicine: Implications for Medical Decision Making, 2018, 38, 593-600.	2.4	4
103	Burn injury: Sunlight and a single dose of methoxsalen. Burns, 1984, 10, 420-421.	1.9	3
104	Clozapine-induced liver injury and pleural effusion. Mental Illness, 2014, 6, 5403.	0.8	2
105	How Do Psychiatrists Apply the Minimum Clinically Important Difference to Assess Patient Responses to Treatment?. MDM Policy and Practice, 2016, 1, 238146831667885.	0.9	2
106	Implementation of personalised medicine policies in mental healthcare: results from a stated preference study in the UK. BJPsych Open, 2022, 8, e40.	0.7	2
107	Mannerly research. Nature, 1995, 375, 625-625.	27.8	0
108	Evaluation of genetic substructure in the Irish Study of High-Density Schizophrenia Families. Psychiatric Genetics, 2004, 14, 187-189.	1.1	0

#	Article	IF	CITATIONS
109	A tariff system for nervous shock: introducing the total impact score. Irish Journal of Psychological Medicine, 2004, 21, 48-52.	1.0	0
110	Dr. Fanous and Colleagues Reply. American Journal of Psychiatry, 2006, 163, 941-942.	7.2	0
111	Dr. Fanous and Colleagues Reply. American Journal of Psychiatry, 2006, 163, 941.	7.2	0