Zhong-Hua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5999444/publications.pdf Version: 2024-02-01

ΖΗΩΝΟ-ΗΙΙΛ CHEN

#	Article	IF	CITATIONS
1	Root Plasma Membrane Transporters Controlling K+/Na+ Homeostasis in Salt-Stressed Barley. Plant Physiology, 2007, 145, 1714-1725.	2.3	458
2	Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant, Cell and Environment, 2005, 28, 1230-1246.	2.8	413
3	Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 2007, 58, 4245-4255.	2.4	358
4	Energy costs of salt tolerance in crop plants. New Phytologist, 2020, 225, 1072-1090.	3.5	284
5	Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Functional Plant Biology, 2007, 34, 150.	1.1	277
6	Tibet is one of the centers of domestication of cultivated barley. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16969-16973.	3.3	221
7	Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance. Frontiers in Plant Science, 2017, 8, 621.	1.7	211
8	Molecular Evolution of Grass Stomata. Trends in Plant Science, 2017, 22, 124-139.	4.3	202
9	Xylem ionic relations and salinity tolerance in barley. Plant Journal, 2010, 61, 839-853.	2.8	198
10	Tissue Metabolic Responses to Salt Stress in Wild and Cultivated Barley. PLoS ONE, 2013, 8, e55431.	1.1	186
11	Evolutionary Conservation of ABA Signaling for Stomatal Closure. Plant Physiology, 2017, 174, 732-747.	2.3	158
12	A Tripartite SNARE-K+ Channel Complex Mediates in Channel-Dependent K+ Nutrition in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 2859-2877.	3.1	156
13	OnGuard, a Computational Platform for Quantitative Kinetic Modeling of Guard Cell Physiology Â. Plant Physiology, 2012, 159, 1026-1042.	2.3	153
14	Reduced Tonoplast Fast-Activating and Slow-Activating Channel Activity Is Essential for Conferring Salinity Tolerance in a Facultative Halophyte, Quinoa Á Â Â. Plant Physiology, 2013, 162, 940-952.	2.3	138
15	Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5015-5020.	3.3	138
16	Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control Â. Plant Physiology, 2012, 159, 1235-1251.	2.3	136
17	A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. ELife, 2017, 6, .	2.8	132
18	Ionomic Responses and Correlations Between Elements and Metabolites Under Salt Stress in Wild and Cultivated Barley. Plant and Cell Physiology, 2013, 54, 1976-1988.	1.5	126

#	Article	IF	CITATIONS
19	Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. Journal of Plant Nutrition and Soil Science, 2005, 168, 255-261.	1.1	121
20	A Novel Motif Essential for SNARE Interaction with the K+ Channel KC1 and Channel Gating in <i>Arabidopsis</i> Â. Plant Cell, 2010, 22, 3076-3092.	3.1	119
21	Dynamic regulation of guard cell anion channels by cytosolic free Ca ²⁺ concentration and protein phosphorylation. Plant Journal, 2010, 61, 816-825.	2.8	115
22	The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K ⁺ channel activity with vegetative growth. Plant Journal, 2012, 69, 241-251.	2.8	115
23	QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley. BMC Genomics, 2017, 18, 9.	1.2	108
24	A fast brassinolideâ€regulated response pathway in the plasma membrane of <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 66, 528-540.	2.8	102
25	Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics, 2014, 15, 611.	1.2	101
26	Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa. International Journal of Molecular Sciences, 2013, 14, 9267-9285.	1.8	96
27	Nitrate reductase mutation alters potassium nutrition as well as nitric oxideâ€mediated control of guard cell ion channels in <i>Arabidopsis</i> . New Phytologist, 2016, 209, 1456-1469.	3.5	93
28	Melatonin improves rice salinity stress tolerance by <scp>NADPH</scp> oxidaseâ€dependent control of the plasma membrane K ⁺ transporters and K ⁺ homeostasis. Plant, Cell and Environment, 2020, 43, 2591-2605.	2.8	93
29	Molecular mechanisms of salinity tolerance in rice. Crop Journal, 2021, 9, 506-520.	2.3	91
30	Genetic Variation of HvCBF Genes and Their Association with Salinity Tolerance in Tibetan Annual Wild Barley. PLoS ONE, 2011, 6, e22938.	1.1	90
31	Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. Frontiers in Plant Science, 2015, 6, 71.	1.7	86
32	The energy cost of the tonoplast futile sodium leak. New Phytologist, 2020, 225, 1105-1110.	3.5	86
33	Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. Journal of Experimental Botany, 2006, 57, 171-184.	2.4	83
34	Genome-Wide Association Study Reveals a New QTL for Salinity Tolerance in Barley (Hordeum vulgare) Tj ETQq0	0 Q.rgBT /0	Overlock 10
35	PYR/PYL/RCAR Abscisic Acid Receptors Regulate K+ and Clâ^' Channels through Reactive Oxygen Species-Mediated Activation of Ca2+ Channels at the Plasma Membrane of Intact Arabidopsis Guard Cells Â. Plant Physiology, 2013, 163, 566-577.	2.3	82

36Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proceedings of
the National Academy of Sciences of the United States of America, 2014, 111, 13403-13408.3.374

#	Article	IF	CITATIONS
37	Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat. Journal of Experimental Botany, 2018, 69, 3987-4001.	2.4	73
38	GORK Channel: A Master Switch of Plant Metabolism?. Trends in Plant Science, 2020, 25, 434-445.	4.3	73
39	Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environmental and Experimental Botany, 2014, 98, 1-12.	2.0	70
40	Evolution of Abscisic Acid Signaling for Stress Responses to Toxic Metals and Metalloids. Frontiers in Plant Science, 2020, 11, 909.	1.7	68
41	Tissue-Specific Regulation of Na+ and K+ Transporters Explains Genotypic Differences in Salinity Stress Tolerance in Rice. Frontiers in Plant Science, 2019, 10, 1361.	1.7	67
42	A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue and Cell Ion Homeostasis. Plant and Cell Physiology, 2018, 59, 1976-1989.	1.5	66
43	Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5223-5228.	3.3	64
44	Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis. Journal of Experimental Botany, 2016, 67, 3747-3762.	2.4	60
45	Effects of light irradiance on stomatal regulation and growth of tomato. Environmental and Experimental Botany, 2014, 98, 65-73.	2.0	56
46	Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors. Plant and Cell Physiology, 2017, 58, 1126-1142.	1.5	55
47	Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods. Energies, 2019, 12, 2737.	1.6	54
48	HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H ⁺ homoeostasis. Plant Biotechnology Journal, 2020, 18, 1683-1696.	4.1	54
49	Back to the Wild: On a Quest for Donors Toward Salinity Tolerant Rice. Frontiers in Plant Science, 2020, 11, 323.	1.7	54
50	Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Australian Journal of Experimental Agriculture, 2006, 46, 555.	1.0	53
51	Na+- K+transport in roots under salt stress. Plant Signaling and Behavior, 2008, 3, 401-403.	1.2	53
52	Combining Ability of Salinity Tolerance on the Basis of NaClâ€Induced K ⁺ Flux from Roots of Barley. Crop Science, 2008, 48, 1382-1388.	0.8	52
53	Assembly and analysis of a <i>qingke</i> reference genome demonstrate its close genetic relation to modern cultivated barley. Plant Biotechnology Journal, 2018, 16, 760-770.	4.1	50
54	Calmodulin HvCaM1 Negatively Regulates Salt Tolerance via Modulation of HvHKT1s and HvCAMTA4. Plant Physiology, 2020, 183, 1650-1662.	2.3	50

#	Article	IF	CITATIONS
55	Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley. Frontiers in Plant Science, 2014, 5, 634.	1.7	49
56	Revealing the roles of GORK channels and NADPH oxidase in acclimation to hypoxia in Arabidopsis. Journal of Experimental Botany, 2017, 68, erw378.	2.4	46
57	Analysis of gas exchange, stomatal behaviour and micronutrients uncovers dynamic response and adaptation of tomato plants to monochromatic light treatments. Plant Physiology and Biochemistry, 2014, 82, 105-115.	2.8	43
58	K+ Uptake, H+-ATPase pumping activity and Ca2+ efflux mechanism are involved in drought tolerance of barley. Environmental and Experimental Botany, 2016, 129, 57-66.	2.0	43
59	Zinc alleviates cadmium toxicity by modulating photosynthesis, ROS homeostasis, and cation flux kinetics in rice. Environmental Pollution, 2020, 265, 114979.	3.7	43
60	Stomatal traits as a determinant of superior salinity tolerance in wild barley. Journal of Plant Physiology, 2020, 245, 153108.	1.6	41
61	Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological / ultrastructural adjustments. Ecotoxicology and Environmental Safety, 2020, 190, 110076.	2.9	39
62	Morpho-physiological and micrographic characterization of maize hybrids under NaCl and Cd stress. Plant Growth Regulation, 2015, 75, 115-122.	1.8	37
63	Halophytic NHXs confer salt tolerance by altering cytosolic and vacuolar K+ and Na+ in Arabidopsis root cell. Plant Growth Regulation, 2017, 82, 333-351.	1.8	37
64	Speedy Grass Stomata: Emerging Molecular and Evolutionary Features. Molecular Plant, 2017, 10, 912-914.	3.9	36
65	A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions. Environmental and Experimental Botany, 2021, 181, 104300.	2.0	36
66	An ATP binding cassette transporter HvABCB25 confers aluminum detoxification in wild barley. Journal of Hazardous Materials, 2021, 401, 123371.	6.5	33
67	Evolution of rapid blueâ€light response linked to explosive diversification of ferns in angiosperm forests. New Phytologist, 2021, 230, 1201-1213.	3.5	33
68	Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis. Plant Signaling and Behavior, 2016, 11, e1183088.	1.2	32
69	Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling. Journal of Experimental Botany, 2020, 71, 6587-6600.	2.4	31
70	Identification of new QTL for salt tolerance from rice variety Pokkali. Journal of Agronomy and Crop Science, 2020, 206, 202-213.	1.7	31
71	Comparative Proteomic Analysis of Aluminum Tolerance in Tibetan Wild and Cultivated Barleys. PLoS ONE, 2013, 8, e63428.	1.1	30
72	Genetic Diversity of Individual Phenolic Acids in Barley and Their Correlation with Barley Malt Quality. Journal of Agricultural and Food Chemistry, 2015, 63, 7051-7057.	2.4	29

#	Article	IF	CITATIONS
73	PpVIN2, an acid invertase gene family member, is sensitive to chilling temperature and affects sucrose metabolism in postharvest peach fruit. Plant Growth Regulation, 2018, 86, 169-180.	1.8	29
74	Resource allocation to growth or luxury consumption drives mycorrhizal responses. Ecology Letters, 2019, 22, 1757-1766.	3.0	29
75	The loss of RBOHD function modulates root adaptive responses to combined hypoxia and salinity stress in Arabidopsis. Environmental and Experimental Botany, 2019, 158, 125-135.	2.0	29
76	Leaf epidermis transcriptome reveals drought-Induced hormonal signaling for stomatal regulation in wild barley. Plant Growth Regulation, 2019, 87, 39-54.	1.8	29
77	Metalloid hazards: From plant molecular evolution to mitigation strategies. Journal of Hazardous Materials, 2021, 409, 124495.	6.5	29
78	DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains. BMC Plant Biology, 2015, 15, 259.	1.6	28
79	Molecular Evolution of Calcium Signaling and Transport in Plant Adaptation to Abiotic Stress. International Journal of Molecular Sciences, 2021, 22, 12308.	1.8	28
80	Light-altering cover materials and sustainable greenhouse production of vegetables: a review. Plant Growth Regulation, 2021, 95, 1-17.	1.8	27
81	Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends in Plant Science, 2022, 27, 890-907.	4.3	27
82	A βâ€ketoacyl carrier protein reductase confers heat tolerance via the regulation of fatty acid biosynthesis and stress signaling in rice. New Phytologist, 2021, 232, 655-672.	3.5	26
83	QTL Mapping Combined With Bulked Segregant Analysis Identify SNP Markers Linked to Leaf Shape Traits in Pisum sativum Using SLAF Sequencing. Frontiers in Genetics, 2018, 9, 615.	1.1	25
84	Identification of aluminium transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae. Metallomics, 2014, 6, 1558.	1.0	23
85	Changes in Expression Level of OsHKT1;5 Alters Activity of Membrane Transporters Involved in K+ and Ca2+ Acquisition and Homeostasis in Salinized Rice Roots. International Journal of Molecular Sciences, 2020, 21, 4882.	1.8	23
86	Identification of Mild Freezing Shock Response Pathways in Barley Based on Transcriptome Profiling. Frontiers in Plant Science, 2016, 7, 106.	1.7	22
87	Roles of Chloroplast Retrograde Signals and Ion Transport in Plant Drought Tolerance. International Journal of Molecular Sciences, 2018, 19, 963.	1.8	22
88	Sodium sequestration confers salinity tolerance in an ancestral wild rice. Physiologia Plantarum, 2021, 172, 1594-1608.	2.6	22
89	High intrinsic water use efficiency is underpinned by high stomatal aperture and guard cell potassium flux in C3 and C4 grasses grown at glacial CO2 and low light. Journal of Experimental Botany, 2022, 73, 1546-1565.	2.4	22
90	Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment. Functional Plant Biology, 2017, 44, 1147.	1.1	21

#	Article	IF	CITATIONS
91	Molecular Evolution and Interaction of Membrane Transport and Photoreception in Plants. Frontiers in Genetics, 2019, 10, 956.	1.1	21
92	Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L. , 2014, 55, 34.		20
93	Comparative life cycle assessment for conventional and organic coffee cultivation in Vietnam. International Journal of Environmental Science and Technology, 2020, 17, 1307-1324.	1.8	20
94	The Barley S-Adenosylmethionine Synthetase 3 Gene HvSAMS3 Positively Regulates the Tolerance to Combined Drought and Salinity Stress in Tibetan Wild Barley. Cells, 2020, 9, 1530.	1.8	20
95	Salinity Effects on Guard Cell Proteome in Chenopodium quinoa. International Journal of Molecular Sciences, 2021, 22, 428.	1.8	20
96	To exclude or to accumulate? Revealing the role of the sodium HKT1;5 transporter in plant adaptive responses to varying soil salinity. Plant Physiology and Biochemistry, 2021, 169, 333-342.	2.8	20
97	Genetic Diversity and QTL Mapping of Thermostability of Limit Dextrinase in Barley. Journal of Agricultural and Food Chemistry, 2015, 63, 3778-3783.	2.4	19
98	HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley. Journal of Experimental Botany, 2020, 71, 6057-6073.	2.4	19
99	Evolutionary Significance of NHX Family and NHX1 in Salinity Stress Adaptation in the Genus Oryza. International Journal of Molecular Sciences, 2022, 23, 2092.	1.8	19
100	Prior exposure of Arabidopsis seedlings to mechanical stress heightens jasmonic acid-mediated defense against necrotrophic pathogens. BMC Plant Biology, 2020, 20, 548.	1.6	18
101	Leaf mesophyll K+ and Clâ^' fluxes and reactive oxygen species production predict rice salt tolerance at reproductive stage in greenhouse and field conditions. Plant Growth Regulation, 2020, 92, 53-64.	1.8	18
102	Transient silencing of an expansin HvEXPA1 inhibits root cell elongation and reduces Al accumulation in root cell wall of Tibetan wild barley. Environmental and Experimental Botany, 2019, 165, 120-128.	2.0	17
103	Molecular Interaction and Evolution of Jasmonate Signaling With Transport and Detoxification of Heavy Metals and Metalloids in Plants. Frontiers in Plant Science, 2021, 12, 665842.	1.7	17
104	Microhair on the adaxial leaf surface of salt secreting halophytic Oryza coarctata Roxb. show distinct morphotypes: Isolation for molecular and functional analysis. Plant Science, 2019, 285, 248-257.	1.7	16
105	Sustainable Protected Cropping: A Case Study of Seasonal Impacts on Greenhouse Energy Consumption during Capsicum Production. Energies, 2020, 13, 4468.	1.6	16
106	Distinct Evolutionary Origins of Intron Retention Splicing Events in NHX1 Antiporter Transcripts Relate to Sequence Specific Distinctions in Oryza Species. Frontiers in Plant Science, 2020, 11, 267.	1.7	16
107	Sugar Beet (Beta vulgaris) Guard Cells Responses to Salinity Stress: A Proteomic Analysis. International Journal of Molecular Sciences, 2020, 21, 2331.	1.8	16
108	Combining ability of barley flour pasting properties. Journal of Cereal Science, 2008, 48, 789-793.	1.8	15

#	Article	IF	CITATIONS
109	Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. International Journal of Molecular Sciences, 2019, 20, 791.	1.8	15
110	Effect of high light on canopy-level photosynthesis and leaf mesophyll ion flux in tomato. Planta, 2020, 252, 80.	1.6	15
111	Molecular Evolution of Plant 14-3-3 Proteins and Function of Hv14-3-3A in Stomatal Regulation and Drought Tolerance. Plant and Cell Physiology, 2023, 63, 1857-1872.	1.5	15
112	Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys. Plant Physiology and Biochemistry, 2014, 75, 36-44.	2.8	14
113	Multiâ€Omics Analysis Reveals the Mechanism Underlying the Edaphic Adaptation in Wild Barley at Evolution Slope (Tabigha). Advanced Science, 2021, 8, e2101374.	5.6	14
114	A novel cover material improves cooling energy and fertigation efficiency for glasshouse eggplant production. Energy, 2022, 251, 123871.	4.5	14
115	Heterosis in CMS hybrids of cotton for photosynthetic and chlorophyll fluorescence parameters. Euphytica, 2005, 144, 353-361.	0.6	13
116	Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis. Plant Methods, 2012, 8, 15.	1.9	13
117	Smart glass impacts stomatal sensitivity of greenhouse <i>Capsicum</i> through altered light. Journal of Experimental Botany, 2021, 72, 3235-3248.	2.4	13
118	Mechanical stress acclimation in plants: Linking hormones and somatic memory to thigmomorphogenesis. Plant, Cell and Environment, 2022, 45, 989-1010.	2.8	13
119	A bicistronic, <i>Ubiquitinâ€10</i> promoterâ€based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact <i>Arabidopsis</i> root epidermis. Plant, Cell and Environment, 2011, 34, 554-564.	2.8	12
120	Chloride transport at plant-soil Interface modulates barley cd tolerance. Plant and Soil, 2019, 441, 409-421.	1.8	12
121	Environmental Impact and Carbon Footprint Assessment of Taiwanese Agricultural Products: A Case Study on Taiwanese Dongshan Tea. Energies, 2019, 12, 138.	1.6	12
122	Molecular response and evolution of plant anion transport systems to abiotic stress. Plant Molecular Biology, 2022, 110, 397-412.	2.0	12
123	Unravelling the physiological basis of salinity stress tolerance in cultivated and wild rice species. Functional Plant Biology, 2022, 49, 351-364.	1.1	12
124	Evolution of environmental stress responses in plants. Plant, Cell and Environment, 2020, 43, 2827-2831.	2.8	11
125	Origins and Stepwise Expansion of R2R3-MYB Transcription Factors for the Terrestrial Adaptation of Plants. Frontiers in Plant Science, 2020, 11, 575360.	1.7	11
126	Does Molecular and Structural Evolution Shape the Speedy Grass Stomata?. Frontiers in Plant Science, 2020, 11, 333.	1.7	11

#	Article	IF	CITATIONS
127	An miR156-regulated nucleobase-ascorbate transporter 2 confers cadmium tolerance via enhanced anti-oxidative capacity in barley. Journal of Advanced Research, 2023, 44, 23-37.	4.4	11
128	Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. Plant and Cell Physiology, 2023, 63, 1787-1805.	1.5	10
129	Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication. Scientific Reports, 2015, 5, 16851.	1.6	9
130	Revealing the Role of the Calcineurin B-Like Protein-Interacting Protein Kinase 9 (CIPK9) in Rice Adaptive Responses to Salinity, Osmotic Stress, and K+ Deficiency. Plants, 2021, 10, 1513.	1.6	9
131	Association of HvLDI with limit dextrinase activity and malt quality in barley. Biotechnology Letters, 2013, 35, 639-645.	1.1	8
132	Smart Glass Film Reduced Ascorbic Acid in Red and Orange Capsicum Fruit Cultivars without Impacting Shelf Life. Plants, 2022, 11, 985.	1.6	8
133	The genome and gene editing system of sea barleygrass provideÂa novel platform for cereal domestication and stress tolerance studies. Plant Communications, 2022, 3, 100333.	3.6	8
134	Root K+ homeostasis and signalling as a determinant of salinity stress tolerance in cultivated and wild rice species. Environmental and Experimental Botany, 2022, 201, 104944.	2.0	8
135	Genotypic difference in the influence of aluminum and low pH on ion flux, rhizospheric pH and ATPase activity between Tibetan wild and cultivated barley. Environmental and Experimental Botany, 2018, 156, 16-24.	2.0	7
136	Comparative Analysis of Root Na+ Relation under Salinity between OryzaÂsativa and Oryza coarctata. Plants, 2022, 11, 656.	1.6	7
137	Genotype-dependent effects of phosphorus supply on physiological and biochemical responses to Al-stress in cultivated and Tibetan wild barley. Plant Growth Regulation, 2017, 82, 259-270.	1.8	6
138	Evolutionary and Regulatory Pattern Analysis of Soybean Ca2+ ATPases for Abiotic Stress Tolerance. Frontiers in Plant Science, 2022, 13, .	1.7	6
139	Current Technologies and Target Crops: A Review on Australian Protected Cropping. Crops, 2022, 2, 172-185.	0.6	6
140	Isolation of high purity guard cell protoplasts of Arabidopsis thaliana for omics research. Plant Growth Regulation, 2019, 89, 37-47.	1.8	5
141	Identification of novel microRNAs for cold deacclimation in barley. Plant Growth Regulation, 2020, 92, 389-400.	1.8	5
142	Energy Minimisation in a Protected Cropping Facility Using Multi-Temperature Acquisition Points and Control of Ventilation Settings. Energies, 2021, 14, 6014.	1.6	5
143	Highly Conserved Evolution of Aquaporin PIPs and TIPs Confers Their Crucial Contribution to Flowering Process in Plants. Frontiers in Plant Science, 2021, 12, 761713.	1.7	5
144	Stress signaling convergence and nutrient crosstalk determine zinc-mediated amelioration against cadmium toxicity in rice. Ecotoxicology and Environmental Safety, 2022, 230, 113128.	2.9	5

#	Article	IF	CITATIONS
145	Molecular evolution and genome-wide analysis of the SBP-box family in cucumber (Cucumis sativas). Plant Growth Regulation, 2021, 93, 175-187.	1.8	4
146	Triangulation of methods using insect cell lines to investigate insecticidal modeâ€ofâ€action. Pest Management Science, 2021, 77, 492-501.	1.7	4
147	Potassium transporters and their evolution in plants under salt stress. , 2022, , 63-83.		4
148	Proto Kranz-like leaf traits and cellular ionic regulation are associated with salinity tolerance in a halophytic wild rice. Stress Biology, 2022, 2, 1.	1.5	4
149	Growing lettuce and cucumber in aÂhydroponic system using food waste derived organic liquid fertiliser. Environmental Sustainability, 0, , .	1.4	3
150	The conceptual approach to quantitative modeling of guard cells. Plant Signaling and Behavior, 2013, 8, e22747.	1.2	2
151	Genotypic differences in cadmium transport in developing barley grains. Environmental Science and Pollution Research, 2017, 24, 7009-7015.	2.7	2
152	Genetics and Genomics of Stomatal Traits for Improvement of Abiotic Stress Tolerance in Cereals. Sustainable Development and Biodiversity, 2019, , 1-20.	1.4	2
153	Model Predictive Direct Power Control Method of Energy Storage Converter in Micro-grid. , 2019, , .		2
154	Reduced apoplastic barriers in tissues of shoot-proximal rhizomes of <i>Oryza coarctata</i> are associated with Na+ sequestration. Journal of Experimental Botany, 2022, 73, 998-1015.	2.4	2
155	Adopting Life Cycle Assessment for Various Greenhouse Typologies in Multiple Cropping Environment in Australia. Sustainable Production, Life Cycle Engineering and Management, 2021, , 347-360.	0.2	1
156	Evolution of phosphate metabolism in Tibetan wild barley to adapt to aluminum stress. Plant and Soil, 0, , .	1.8	1
157	Studying Plant Salt Tolerance with the Voltage Clamp Technique. , 2012, 913, 19-33.		0
158	Editorial: Regulation and Manipulation of Nutrient-Controlling Genes in Crops. Frontiers in Genetics, 2020, 11, 164.	1.1	0
159	Process Modelling for an Efficient and Dynamic Energy Consumption for Fresh Produce in Protected Cropping. Sustainable Production, Life Cycle Engineering and Management, 2021, , 361-370.	0.2	0
160	Stomatal regulation and adaptation to salinity in glycophytes and halophytes. Advances in Botanical Research, 2022, , .	0.5	0