Jun-Chao Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5999235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SnS particles anchored on Ti3C2 nanosheets as high-performance anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 893, 162089.	2.8	14
2	A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries. Chemical Engineering Journal, 2022, 428, 131780.	6.6	39
3	Tin antimony oxide @graphene as a novel anode material for lithium ion batteries. Ceramics International, 2022, 48, 2118-2123.	2.3	6
4	Surface Modification Engineering Enabling 4.6ÂV Singleâ€Crystalline Niâ€Rich Cathode with Superior Longâ€Term Cyclability. Advanced Functional Materials, 2022, 32, 2109421.	7.8	99
5	High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy, 2022, 95, 106962.	8.2	86
6	Lattice Engineering to Refine Particles and Strengthen Bonds of the LiNi _{0.9} Co _{0.05} Mn _{0.05} O ₂ Cathode toward Efficient Lithium Ion Storage. ACS Sustainable Chemistry and Engineering, 2022, 10, 3532-3545.	3.2	21
7	W-Doped LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ with Excellent High-Rate Performance Synthesized via Hydrothermal Lithiation. Journal of the Electrochemical Society, 2022, 169, 050509.	1.3	8
8	Achieving structural stability of LiCoO2 at high-voltage by gadolinium decoration. Materials Today Energy, 2022, 25, 100980.	2.5	5
9	Nitrogen-rich two-dimensional π-conjugated porous covalent quinazoline polymer for lithium storage. Energy Storage Materials, 2022, 50, 225-233.	9.5	20
10	In-situ chemical conversion film for stabilizing zinc metal anodes. Journal of Energy Chemistry, 2022, 73, 387-393.	7.1	26
11	A novelty strategy induced pinning effect and defect structure in Ni-rich layered cathodes towards boosting its electrochemical performance. Journal of Energy Chemistry, 2022, 72, 570-580.	7.1	18
12	High-performance quaternary polymer solid-state electrolyte via one-step casting method. Journal Physics D: Applied Physics, 2022, 55, 384002.	1.3	0
13	Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design. Journal of Energy Chemistry, 2021, 55, 114-123.	7.1	94
14	Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode by surface modification using La–Co–O compound. Ceramics International, 2021, 47, 2656-2664.	2.3	26
15	Encouraging Voltage Stability upon Long Cycling of Li-Rich Mn-Based Cathode Materials by Ta–Mo Dual Doping. ACS Applied Materials & Interfaces, 2021, 13, 25981-25992.	4.0	38
16	Fast Li-ion conductor Li1+yTi2-yAly(PO4)3 modified Li1.2[Mn0.54Ni0.13Co0.13]O2 as high performance cathode material for Li-ion battery. Ceramics International, 2021, 47, 18397-18404.	2.3	14
17	Modification of LiNi0.8Co0.1Mn0.1O2 cathode materials from the perspective of chemical stabilization and kinetic hindrance. Journal of Power Sources, 2021, 499, 229756.	4.0	19
18	High entropy oxides (FeNiCrMnX)3O4 (X=Zn, Mg) as anode materials for lithium ion batteries. Ceramics International, 2021, 47, 33972-33977.	2.3	30

#	Article	IF	CITATIONS
19	Suppress voltage decay of lithium-rich materials by coating layers with different crystalline states. Journal of Energy Chemistry, 2021, 60, 591-598.	7.1	39
20	Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: A review. Sustainable Materials and Technologies, 2021, 29, e00305.	1.7	25
21	MoS2/SnS@C hollow hierarchical nanotubes as superior performance anode for sodium-ion batteries. Nano Energy, 2021, 90, 106568.	8.2	112
22	An advance review of solid-state battery: Challenges, progress and prospects. Sustainable Materials and Technologies, 2021, 29, e00297.	1.7	74
23	Na2/3MnO2 nanoplates with exposed active planes as superior electrochemical performance sodium-ion batteries. Ionics, 2021, 27, 5187-5196.	1.2	6
24	A sandwich-like Ti3C2@VO2 composite synthesized by a hydrothermal method for lithium storage. Solid State Ionics, 2021, 369, 115714.	1.3	22
25	Enhancing Cell Performance of Lithium-Rich Manganese-Based Materials via Tailoring Crystalline States of a Coating Layer. ACS Applied Materials & Interfaces, 2021, 13, 49390-49401.	4.0	22
26	Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides. Materials Today, 2021, 51, 365-392.	8.3	102
27	Multifunctionality of cerium decoration in enhancing the cycling stability and rate capability of a nickel-rich layered oxide cathode. Nanoscale, 2021, 13, 20213-20224.	2.8	16
28	Mechanical and Dynamic Mechanical Properties of the Amino Silicone Oil Emulsion Modified Ramie Fiber Reinforced Composites. Polymers, 2021, 13, 4083.	2.0	16
29	Tungsten-consolidated crystal structure of LiNi0.6Co0.2Mn0.2O2 cathode materials for superior electrochemical performance. Applied Surface Science, 2020, 509, 145287.	3.1	15
30	Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries. Ionics, 2020, 26, 1695-1701.	1.2	30
31	Single-walled carbon nanotube as conductive additive for SiO/C composite electrodes in pouch-type lithium-ion batteries. Ionics, 2020, 26, 1721-1728.	1.2	19
32	In Situ-Formed Hollow Cobalt Sulfide Wrapped by Reduced Graphene Oxide as an Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 2671-2678.	4.0	56
33	Highly Catalytic Boron Nitride Nanofiber In Situ Grown on Pretreated Ketjenblack as a Cathode for Enhanced Performance of Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 10841-10853.	2.5	16
34	A novel hollow porous structure designed for Na0.44Mn2/3Co1/6Ni1/6O2 cathode material of sodium-ion batteries. Journal of Power Sources, 2020, 479, 228788.	4.0	19
35	Electrospinning MoS2-Decorated Porous Carbon Nanofibers for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 11893-11899.	2.5	20
36	3D porous carbon nanofibers with CeO2-decorated as cathode matrix for high performance lithium-sulfur batteries. Journal of Power Sources, 2020, 473, 228588.	4.0	56

#	Article	IF	CITATIONS
37	Synthesis and characterization of SiO2/Ti3C2 anode materials for lithium-ion batteries via different methods. Ionics, 2020, 26, 5325-5331.	1.2	15
38	Potassium phosphate monobasic induced decoration from the surface into the bulk lattice for Ni-rich cathode materials with enhanced cell performance. Sustainable Energy and Fuels, 2020, 4, 3352-3362.	2.5	10
39	Interfacial Engineering with Liquid Metal for Si-Based Hybrid Electrodes in Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 5147-5152.	2.5	20
40	Unique FeP@C with polyhedral structure in-situ coated with reduced graphene oxide as an anode material for lithium ion batteries. Journal of Alloys and Compounds, 2020, 841, 155670.	2.8	51
41	Self-assembled GeO _X /Ti ₃ C ₂ T _X Composites as Promising Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2020, 59, 4711-4719.	1.9	18
42	Surface dual-shell construction enhances the electrochemical performances of Li1·2Ni0·13Co0·13Mn0·54O2 cathode materials. Electrochimica Acta, 2020, 341, 136082.	2.6	10
43	Flux-free synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 boosts its electrochemical performance in lithium batteries. Journal of Power Sources, 2020, 464, 228207.	4.0	67
44	One-time sintering process to modify xLi2MnO3 (-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. Journal of Energy Chemistry, 2020, 50, 271-279.	7.1	43
45	Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Nano Energy, 2019, 63, 103889.	8.2	138
46	Overwhelming the Performance of Single Atoms with Atomic Clusters for Platinum-Catalyzed Hydrogen Evolution. ACS Catalysis, 2019, 9, 8213-8223.	5.5	68
47	Boosting Cell Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ via Surface Structure Design. Small, 2019, 15, e1904854.	5.2	92
48	Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy, 2019, 65, 104043.	8.2	193
49	Structure and primary particle double-tuning by trace nano-TiO ₂ for a high-performance LiNiO ₂ cathode material. Sustainable Energy and Fuels, 2019, 3, 3234-3243.	2.5	16
50	V ₂ (PO ₄)O/C@CNT hollow spheres with a core–shell structure as a high performance anode material for lithium-ion batteries. Materials Chemistry Frontiers, 2019, 3, 456-463.	3.2	15
51	Dual-carbon confined SnO2 as ultralong-life anode for Li-ion batteries. Ceramics International, 2019, 45, 7830-7838.	2.3	31
52	Ultrahigh-Rate Behavior Anode Materials of MoSe ₂ Nanosheets Anchored on Dual-Heteroatoms Functionalized Graphene for Sodium-Ion Batteries. Inorganic Chemistry, 2019, 58, 8169-8178.	1.9	77
53	Iron–zinc sulfide Fe ₂ Zn ₃ S ₅ /Fe _{1â^'x} S@C derived from a metal–organic framework as a high performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 16479-16487.	5.2	51
54	Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage. Nano Energy, 2019, 62, 401-409.	8.2	235

#	Article	IF	CITATIONS
55	V2(PO4)O encapsulated into crumpled nitrogen-doped graphene as a high-performance anode material for sodium-ion batteries. Electrochimica Acta, 2019, 306, 238-244.	2.6	11
56	Metal-organic framework derived flower-like FeS/C composite as an anode material in lithium-ion and sodium-ion batteries. Journal of Alloys and Compounds, 2019, 790, 288-295.	2.8	41
57	Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy and Environmental Science, 2019, 12, 1512-1533.	15.6	402
58	Graphene Wrapped FeSe ₂ Nanoâ€Microspheres with High Pseudocapacitive Contribution for Enhanced Naâ€Ion Storage. Advanced Energy Materials, 2019, 9, 1900356.	10.2	216
59	Formation and Effect of Residual Lithium Compounds on Li-Rich Cathode Material Li _{1.35} [Ni _{0.35} Mn _{0.65}]O ₂ . ACS Applied Materials & Interfaces, 2019, 11, 11518-11526.	4.0	70
60	Effect of MgO and TiO ₂ Coating on the Electrochemical Performance of Liâ€Rich Cathode Materials for Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1800829.	1.8	36
61	Highly conductive C-Si@G nanocomposite as a high-performance anode material for Li-ion batteries. Electrochimica Acta, 2019, 295, 719-725.	2.6	41
62	Synthesis and characterization of a sulfur/TiO2 composite for Li-S battery. Ionics, 2019, 25, 9-15.	1.2	20
63	Nano-micro structure VO2/CNTs composite as a potential anode material for lithium ion batteries. Ceramics International, 2018, 44, 13113-13121.	2.3	46
64	CNT-Decorated Na ₃ V ₂ (PO ₄) ₃ Microspheres as a High-Rate and Cycle-Stable Cathode Material for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 3590-3595.	4.0	95
65	ZnS nanoparticles embedded in porous honeycomb-like carbon nanosheets as high performance anode material for lithium ion batteries. Ceramics International, 2018, 44, 13706-13711.	2.3	38
66	Comparative Investigation of Na ₂ FeP ₂ O ₇ Sodium Insertion Material Synthesized by Using Different Sodium Sources. ACS Sustainable Chemistry and Engineering, 2018, 6, 4966-4972.	3.2	53
67	In-situ Grown SnS2 Nanosheets on rGO as an Advanced Anode Material for Lithium and Sodium Ion Batteries. Frontiers in Chemistry, 2018, 6, 629.	1.8	36
68	In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy, 2018, 53, 613-621.	8.2	243
69	V2O3/rGO composite as a potential anode material for lithium ion batteries. Ceramics International, 2018, 44, 15044-15049.	2.3	42
70	VPO4@C/graphene microsphere as a potential anode material for lithium-ion batteries. Ceramics International, 2018, 44, 14432-14438.	2.3	40
71	Conductive molybdenum carbide as the polysulfide reservoir for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 17142-17147.	5.2	37
72	Self-assembled 3D network GeOx/CNTs nanocomposite as anode material for Li-ion battery. Powder Technology, 2018, 338, 211-219.	2.1	11

#	Article	IF	CITATIONS
73	Comparative Investigation of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 Cathode Materials Synthesized by Using Different Lithium Sources. Frontiers in Chemistry, 2018, 6, 159.	1.8	12
74	Reduced Graphene Oxide Decorated Na3V2(PO4)3 Microspheres as Cathode Material With Advanced Sodium Storage Performance. Frontiers in Chemistry, 2018, 6, 174.	1.8	25
75	Multiple Linkage Modification of Lithium-Rich Layered Oxide Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ for Lithium Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 31324-31329.	4.0	50
76	Effect of synthesis temperature on the phase structure, morphology and electrochemical performance of Ti3C2 as an anode material for Li-ion batteries. Ceramics International, 2018, 44, 16214-16218.	2.3	19
77	Suppressing the Voltage Fading of Li[Li _{0.2} Ni _{0.13} Co _{0.13} Mn _{0.54}]O ₂ Cathode Material via Al ₂ O ₃ Coating for Li-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, 41648-41655	1.3	24
78	Cathode material LiNi0.8Co0.1Mn0.1O2/LaPO4 with high electrochemical performance for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 764, 44-50.	2.8	55
79	Enhanced electrochemical performance of LiNi 0.8 Co 0.1 Mn 0.1 O 2 with lithium-reactive Li 3 VO 4 coating. Journal of Alloys and Compounds, 2017, 706, 198-204.	2.8	109
80	In situ-formed LiVOPO 4 @V 2 O 5 core-shell nanospheres as a cathode material for lithium-ion cells. Energy Storage Materials, 2017, 7, 48-55.	9.5	60
81	Cyclic performance of Li-rich layered material Li1.1Ni0.35Mn0.65O2 synthesized through a two-step calcination method. Electrochimica Acta, 2017, 252, 286-294.	2.6	21
82	Synthesis and electrochemical performance of Ni doped Na3V2(PO4)3/C cathode materials for sodium ion batteries. Journal of Alloys and Compounds, 2017, 728, 976-983.	2.8	50
83	Investigation of phase structure change and electrochemical performance in LiVP2O7-Li3V2(PO4)3-LiVPO4F system. Electrochimica Acta, 2016, 198, 195-202.	2.6	34
84	3D-porous β-LiVOPO ₄ /C microspheres as a cathode material with enhanced performance for Li-ion batteries. RSC Advances, 2015, 5, 7208-7214.	1.7	10
85	Composite cathode material β-LiVOPO ₄ /LaPO ₄ with enhanced electrochemical properties for lithium ion batteries. RSC Advances, 2014, 4, 40912-40916.	1.7	16
86	Comparative investigation of microporous and nanosheet LiVOPO ₄ as cathode materials for lithium-ion batteries. RSC Advances, 2014, 4, 41076-41080.	1.7	20
87	Electrochemical Properties of VPO ₄ /C Nanosheets and Microspheres As Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 6223-6226.	4.0	48
88	Comparative Investigation of Phosphate-Based Composite Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 13520-13526.	4.0	38
89	VOPO ₄ nanosheets as anode materials for lithium-ion batteries. Chemical Communications, 2014, 50, 11132.	2.2	39
90	A novel lithium vanadium fluorophosphate nanosheet with uniform carbon coating as a cathode material for lithium-ion batteries. Journal of Power Sources, 2014, 264, 123-127.	4.0	50

#	Article	IF	CITATIONS
91	Preparation and electrochemical performance of 2LiFe1–xCoxPO4–Li3V2(PO4)3/C cathode material for lithium-ion batteries. Transactions of Nonferrous Metals Society of China, 2013, 23, 1028-1032.	1.7	2
92	Studies of Composite Cathode Material LiFePO4–Li3V2(PO4)3 and It's Precursor FeVO4·‹i>xH2O. Bulletin of the Chemical Society of Japan, 2013, 86, 376-381.	2.0	5
93	Low-temperature Electrochemical Performance of LiFePO4/C Cathode with 3D Conducting Networks. Chemistry Letters, 2012, 41, 232-233.	0.7	4
94	Structural properties of composite cathode material LiFePO4–Li3V2(PO4)3. Ionics, 2011, 17, 859-862.	1.2	13
95	Characteristics of xLiFePO4·y Li3V2(PO4)3 electrodes for lithium batteries. Ionics, 2009, 15, 753-759.	1.2	53
96	LiFePO4 with enhanced performance synthesized by a novel synthetic route. Journal of Power Sources, 2008, 184, 574-577.	4.0	79