Gedeng Ruan

List of Publications by Citations

Source: https://exaly.com/author-pdf/5999208/gedeng-ruan-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 63
 6,108
 36
 64

 papers
 6,108
 h-index
 g-index

 64
 6,709
 11.1
 5.68

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
63	Coal as an abundant source of graphene quantum dots. <i>Nature Communications</i> , 2013 , 4, 2943	17.4	556
62	Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. <i>Advanced Materials</i> , 2014 , 26, 8163-8	24	497
61	Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. <i>Advanced Materials</i> , 2015 , 27, 3175-80	24	406
60	A seamless three-dimensional carbon nanotube graphene hybrid material. <i>Nature Communications</i> , 2012 , 3, 1225	17.4	390
59	Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. <i>ACS Nano</i> , 2013 , 7, 6001-6	16.7	384
58	Growth of graphene from food, insects, and waste. ACS Nano, 2011, 5, 7601-7	16.7	384
57	High-Performance Pseudocapacitive Microsupercapacitors from Laser-Induced Graphene. <i>Advanced Materials</i> , 2016 , 28, 838-45	24	335
56	Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. <i>ACS Nano</i> , 2014 , 8, 9518-23	16.7	310
55	Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction. <i>ACS Applied Materials & District Section (Color of the hydrogen)</i> 1. Applied Materials & District Section (Color of the hydrogen) 1. Applied Materials & District Section (Color of the hydrogen) 2. Applied Materials & District	9.5	158
54	Rebar graphene. <i>ACS Nano</i> , 2014 , 8, 5061-8	16.7	155
53	Three-dimensional nanoporous Fe D/FeI I-graphene heterogeneous thin films for lithium-ion batteries. <i>ACS Nano</i> , 2014 , 8, 3939-46	16.7	151
52	Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. <i>Nature Communications</i> , 2012 , 3, 1101	17.4	146
51	Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. <i>ACS Nano</i> , 2014 , 8, 9622-8	16.7	130
50	Towards hybrid superlattices in graphene. <i>Nature Communications</i> , 2011 , 2, 559	17.4	130
49	Enhanced Cycling Stability of Lithium-Ion Batteries Using Graphene-Wrapped Fe3O4-Graphene Nanoribbons as Anode Materials. <i>Advanced Energy Materials</i> , 2015 , 5, 1500171	21.8	113
48	Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances. <i>ACS Nano</i> , 2013 , 7, 10380-6	16.7	109
47	Flexible three-dimensional nanoporous metal-based energy devices. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6187-90	16.4	99

46	Vertically Aligned WS2 Nanosheets for Water Splitting. Advanced Functional Materials, 2015, 25, 6199-6	204 6	98
45	Asphalt-derived high surface area activated porous carbons for carbon dioxide capture. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 1376-82	9.5	91
44	Flexible Nanoporous WO3-x Nonvolatile Memory Device. ACS Nano, 2016, 10, 7598-603	16.7	87
43	Nitrogen-doped carbonized cotton for highly flexible supercapacitors. <i>Carbon</i> , 2016 , 105, 260-267	10.4	85
42	Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 9590-4	9.5	83
41	Graphene-Ni-EMnO2 and -Cu-EMnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction. <i>Chemical Communications</i> , 2012 , 48, 7931-3	5.8	76
40	Enhanced cycling stability of lithium sulfur batteries using sulfur-polyaniline-graphene nanoribbon composite cathodes. <i>ACS Applied Materials & Distributer (Samp)</i> (1998) Accompanies (1998) 1999 1999 1999 1999 1999 1999 1999	9.5	69
39	Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors. <i>ACS Nano</i> , 2013 , 7, 5151-9	16.7	69
38	Use of isotope differential derivatization for simultaneous determination of thiols and oxidized thiols by liquid chromatography tandem mass spectrometry. <i>Analytical Biochemistry</i> , 2011 , 416, 159-66	3.1	67
37	Biochar as a renewable source for high-performance CO2 sorbent. <i>Carbon</i> , 2016 , 107, 344-351	10.4	65
36	Hybrid organic-inorganic silica monolith with hydrophobic/strong cation-exchange functional groups as a sorbent for micro-solid phase extraction. <i>Journal of Chromatography A</i> , 2009 , 1216, 7739-46	5 4·5	60
35	Nanoporous silicon oxide memory. <i>Nano Letters</i> , 2014 , 14, 4694-9	11.5	56
34	Evaluating polymer monolith in-tube solid-phase microextraction coupled to liquid chromatography/quadrupole time-of-flight mass spectrometry for reliable quantification and confirmation of quinolone antibacterials in edible animal food. <i>Journal of Chromatography A</i> , 2009 , 1216, 7510-9	4.5	55
33	Three-dimensional thin film for lithium-ion batteries and supercapacitors. <i>ACS Nano</i> , 2014 , 8, 7279-87	16.7	46
32	Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. <i>Nano Research</i> , 2016 , 9, 2904-2911	10	45
31	Three-Dimensional Networked Nanoporous Ta2O(5-x) Memory System for Ultrahigh Density Storage. <i>Nano Letters</i> , 2015 , 15, 6009-14	11.5	39
30	Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring. <i>Nano Letters</i> , 2015 , 15, 8229-39	11.5	38
29	Tungsten-based porous thin-films for electrocatalytic hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5798-5804	13	38

28	Highly stable carbon nanoparticles designed for downhole hydrocarbon detection. <i>Energy and Environmental Science</i> , 2012 , 5, 8304	35.4	38
27	Graphene on Metal Grids as the Transparent Conductive Material for Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2014 , 118, 25863-25868	3.8	32
26	Carbon-Free Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	31
25	Functionalized graphene nanoribbons via anionic polymerization initiated by alkali metal-intercalated carbon nanotubes. <i>ACS Nano</i> , 2013 , 7, 2669-75	16.7	28
24	Adsorption and precipitation of scale inhibitors on shale formations. <i>Journal of Petroleum Science and Engineering</i> , 2015 , 136, 32-40	4.4	27
23	Solubility Measurements and Predictions of Gypsum, Anhydrite, and Calcite Over Wide Ranges of Temperature, Pressure, and Ionic Strength with Mixed Electrolytes. <i>Rock Mechanics and Rock Engineering</i> , 2017 , 50, 327-339	5.7	27
22	Phosphino-polycarboxylic acid modified inhibitor nanomaterial for oilfield scale control: Synthesis, characterization and migration. <i>Journal of Industrial and Engineering Chemistry</i> , 2017 , 45, 366-374	6.3	25
21	Development and Application of a New Theoretical Model for Additive Impacts on Mineral Crystallization. <i>Crystal Growth and Design</i> , 2017 , 17, 4006-4014	3.5	24
20	Carbon-based nanoreporters designed for subsurface hydrogen sulfide detection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 7652-8	9.5	23
19	Segregation of Amphiphilic Polymer-Coated Nanoparticles to Bicontinuous Oil/Water Microemulsion Phases. <i>Energy & Discourt Sensor</i> 2017, 31, 1339-1346	4.1	22
18	Determination of adsorption isotherm parameters with correlated errors by measurement error models. <i>Chemical Engineering Journal</i> , 2015 , 281, 921-930	14.7	22
17	Growth and Transfer of Seamless 3D Graphene-Nanotube Hybrids. <i>Nano Letters</i> , 2016 , 16, 1287-92	11.5	22
16	An assay method to determine mineral scale inhibitor efficiency in produced water. <i>Journal of Petroleum Science and Engineering</i> , 2016 , 143, 103-112	4.4	21
15	Mechanistic understanding of calcium-phosphonate solid dissolution and scale inhibitor return behavior in oilfield reservoir: formation of middle phase. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 21458-68	3.6	20
14	Effect of anchor and functional groups in functionalized graphene devices. <i>Nano Research</i> , 2013 , 6, 138	-1:48	19
13	Barite scale formation and inhibition in laminar and turbulent flow: A rotating cylinder approach. Journal of Petroleum Science and Engineering, 2017 , 149, 183-192	4.4	18
12	New Approach to Study Iron Sulfide Precipitation Kinetics, Solubility, and Phase Transformation. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 9016-9027	3.9	17
11	Calcite and Barite Solubility Measurements in Mixed Electrolyte Solutions and Development of a Comprehensive Model for Water-Mineral-Gas Equilibrium of the Na-K-Mg-Ca-Ba-Sr-Cl-SO4-CO3-HCO3-CO2(aq)-H2O System up to 250 °C and 1500 bar. <i>Industrial</i>	3.9	15

LIST OF PUBLICATIONS

10	Two-Stage Model Reveals Barite Crystallization Kinetics from Solution Turbidity. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 10864-10874	3.9	14	
9	Functional scale inhibitor nanoparticle capsule delivery vehicles for oilfield mineral scale control. <i>RSC Advances</i> , 2016 , 6, 43016-43027	3.7	12	
8	Mineral Precipitation Kinetics: Assessing the Effect of Hydrostatic Pressure and Its Implication on the Nucleation Mechanism. <i>Crystal Growth and Design</i> , 2016 , 16, 4846-4854	3.5	7	
7	Scaling Risk and Inhibition Prediction of Carbonate Scale at High Temperature 2017,		7	
6	Calcium Sulfate Scaling Risk and Inhibition for a Steamflood Project. SPE Journal, 2017, 22, 881-891	3.1	5	
5	Facile one-pot synthesis of metal-phosphonate colloidal scale inhibitor: Synthesis and laboratory evaluation. <i>Fuel</i> , 2020 , 282, 118855	7.1	4	
4	Transport and return of an oilfield scale inhibitor reverse micelle nanofluid: impact of preflush and overflush. <i>RSC Advances</i> , 2016 , 6, 66672-66681	3.7	4	
3	Acid/base and metal complex solution chemistry of sulfonated polyacrylate copolymer versus temperature and ionic strength. <i>Applied Geochemistry</i> , 2017 , 76, 1-8	3.5	2	
2	Scale Formation and Control Under Turbulent Conditions 2016,		1	
1	Sodium chloride (halite) mineral scale threat assessment and scale inhibitor evaluation by two common jar test based methods. <i>Journal of Water Process Engineering</i> , 2021 , 43, 102241	6.7	1	