Wei-Chuan Shih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5999175/publications.pdf

Version: 2024-02-01

		147726	197736
126	2,650	31	49
papers	citations	h-index	g-index
130	130	130	2925
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D Crossâ€Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surfaceâ€Enhanced Raman Spectroscopy Analysis. Advanced Materials, 2016, 28, 8695-8704.	11.1	178
2	Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano, 2021, 15, 6038-6060.	7.3	120
3	Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots. Nanoscale, 2014, 6, 8199-8207.	2.8	105
4	Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates. Nanoscale, 2013, 5, 4105.	2.8	99
5	Fabricating optical lenses by inkjet printing and heat-assisted in situ /i>curing of polydimethylsiloxane for smartphone microscopy. Journal of Biomedical Optics, 2015, 20, 047005.	1.4	91
6	Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release. Nanoscale, 2014, 6, 5718-5724.	2.8	88
7	Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale, 2014, 6, 8521-8526.	2.8	85
8	Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomedical Optics Express, 2015, 6, 849.	1.5	81
9	Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population. Applied Optics, 2014, 53, 2881.	0.9	78
10	Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection. Journal of Biomedical Optics, 2014, 19, 111611.	1.4	77
11	Gold Nanoshell-Decorated Silicone Surfaces for the Near-Infrared (NIR) Photothermal Destruction of the Pathogenic Bacterium <i>E. faecalis</i> . ACS Applied Materials & Interfaces, 2015, 7, 3981-3993.	4.0	77
12	Simultaneous Chemical and Refractive Index Sensing in the 1–2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks. Nano Letters, 2016, 16, 4641-4647.	4.5	72
13	Open-source do-it-yourself multi-color fluorescence smartphone microscopy. Biomedical Optics Express, 2017, 8, 5075.	1.5	64
14	Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles. Nanoscale, 2014, 6, 12470-12475.	2.8	62
15	Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications. MRS Bulletin, 2018, 43, 49-56.	1.7	60
16	Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part I: Theory and simulations. Optics Express, 2008, 16, 12726.	1.7	55
17	Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications. Journal of Materials Chemistry C, 2015, 3, 247-252.	2.7	55
18	High-speed hyperspectral Raman imaging for label-free compositional microanalysis. Biomedical Optics Express, 2013, 4, 2376.	1.5	53

#	Article	IF	CITATIONS
19	Photothermal inactivation of heat-resistant bacteria on nanoporous gold disk arrays. Optical Materials Express, 2016, 6, 1217.	1.6	53
20	Parallel Raman microspectroscopy using programmable multipoint illumination. Optics Letters, 2012, 37, 1289.	1.7	48
21	Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging. Journal of Biomedical Optics, 2014, 19, 050501.	1.4	48
22	Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles. RSC Advances, 2014, 4, 36682-36688.	1.7	48
23	Noninvasive glucose sensing by transcutaneous Raman spectroscopy. Journal of Biomedical Optics, 2015, 20, 051036.	1.4	46
24	Smartphone Nanocolorimetry for On-Demand Lead Detection and Quantitation in Drinking Water. Analytical Chemistry, 2018, 90, 11517-11522.	3.2	45
25	Labelâ€free, zeptomole cancer biomarker detection by surfaceâ€enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles. Journal of Biophotonics, 2015, 8, 855-863.	1.1	44
26	Infrared contrast of crude-oil-covered water surfaces. Optics Letters, 2008, 33, 3019.	1.7	43
27	Nanoporous Gold Disks Functionalized with Stabilized G-Quadruplex Moieties for Sensing Small Molecules. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29968-29976.	4.0	41
28	EBL-Based Fabrication and Different Modeling Approaches for Nanoporous Gold Nanodisks. ACS Photonics, 2017, 4, 1870-1878.	3.2	39
29	Integrated Nanogap Platform for Sub-Volt Dielectrophoretic Trapping and Real-Time Raman Imaging of Biological Nanoparticles. Nano Letters, 2018, 18, 5946-5953.	4.5	39
30	Constrained Regularization:Â Hybrid Method for Multivariate Calibration. Analytical Chemistry, 2007, 79, 234-239.	3.2	34
31	Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II: Experimental applications. Optics Express, 2008, 16, 12737.	1.7	34
32	10×Enhanced Heterogeneous Nanocatalysis on a Nanoporous Gold Disk Array with High-Density Hot Spots. ACS Applied Materials & Spots & Spots.	4.0	33
33	Modeling of thickness dependent infrared radiance contrast of native and crude oil covered water surfaces. Optics Express, 2008, 16, 10535.	1.7	30
34	Symmetry Breaking-Induced Plasmonic Mode Splitting in Coupled Gold–Silver Alloy Nanodisk Array for Ultrasensitive RGB Colorimetric Biosensing. ACS Applied Materials & Interfaces, 2019, 11, 2273-2281.	4.0	30
35	Determination of uncertainty in parameters extracted from single spectroscopic measurements. Journal of Biomedical Optics, 2007, 12, 064012.	1.4	28
36	Effective Light Directed Assembly of Building Blocks with Microscale Control. Small, 2017, 13, 1700684.	5.2	27

#	Article	IF	CITATIONS
37	Far-field plasmonic coupling in 2-dimensional polycrystalline plasmonic arrays enables wide tunability with low-cost nanofabrication. Nanoscale Horizons, 2017, 2, 267-276.	4.1	26
38	Photothermal generation of programmable microbubble array on nanoporous gold disks. Optics Express, 2018, 26, 16893.	1.7	26
39	Nanoporous Gold Nanocomposites as a Versatile Platform for Plasmonic Engineering and Sensing. Sensors, 2017, 17, 1519.	2.1	22
40	Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues. Analyst, The, 2014, 139, 4270-4278.	1.7	21
41	Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying. Optics Express, 2016, 24, 23610.	1.7	21
42	Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing. Nanoscale Horizons, 2017, 2, 217-224.	4.1	21
43	Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection. Laser Physics Letters, 2014, 11, 105602.	0.6	19
44	Plasmonic nano-aperture label-free imaging (PANORAMA). Nature Communications, 2020, 11, 5805.	5.8	19
45	Raman spectroscopy as a diagnostic tool for monitoring acute nephritis. Journal of Biophotonics, 2016, 9, 260-269.	1.1	17
46	Plasmonic nanoparticle-based expansion microscopy with surface-enhanced Raman and dark-field spectroscopic imaging. Biomedical Optics Express, 2018, 9, 603.	1.5	17
47	In situ patterning of hierarchical nanoporous gold structures by in-plane dealloying. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 194, 34-40.	1.7	15
48	3-Dimensional Plasmonic Substrates Based on Chicken Eggshell Bio-Templates for SERS-Based Bio-Sensing. Micromachines, 2017, 8, 196.	1.4	15
49	Mitigating fringing in discrete frequency infrared imaging using time-delayed integration. Biomedical Optics Express, 2018, 9, 832.	1.5	15
50	Automated image curvature assessment and correction for high-throughput Raman spectroscopy and microscopy. Biomedical Spectroscopy and Imaging, 2014, 3, 359-368.	1.2	14
51	Compressed sensing hyperspectral imaging in the 09–25  μm shortwave infrared wavelength range u a digital micromirror device and InGaAs linear array detector. Applied Optics, 2018, 57, 5019.	sing 0.9	12
52	Fabrication of multipoint side-firing optical fiber by laser micro-ablation. Optics Letters, 2017, 42, 1808.	1.7	12
53	Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy. Journal of Innovative Optical Health Sciences, 2015, 08, 1550006.	0.5	11
54	Investigation of Thermal Properties of Graphene-Coated Membranes by Laser Irradiation to Remove Biofoulants. Environmental Science & Environmental Sci	4.6	11

#	Article	IF	CITATIONS
55	MEMS tunable gratings with analog actuation. Information Sciences, 2003, 149, 31-40.	4.0	10
56	Smartphone Nano-Colorimetry for On-Demand Multiplex Lead and Mercury Detection and Quantitation in Drinking Water. IEEE Sensors Journal, 2020, 20, 6685-6691.	2.4	10
57	Automated batch characterization of inkjet-printed elastomer lenses using a LEGO platform. Applied Optics, 2017, 56, 7346.	0.9	9
58	Toward the identification of marijuana varieties by headspace chemical forensics. Forensic Chemistry, 2018, 11, 23-31.	1.7	8
59	Mid-Infrared Laser Spectroscopy Detection and Quantification of Explosives in Soils Using Multivariate Analysis and Artificial Intelligence. Applied Sciences (Switzerland), 2020, 10, 4178.	1.3	8
60	Detection of phytocannabinoids from buccal swabs by headspace solid phase microextraction – gas chromatography/mass spectrometry. Analytical Methods, 2018, 10, 942-946.	1.3	7
61	Commercial and emerging technologies for cancer diagnosis and prognosis based on circulating tumor exosomes. JPhys Photonics, 2020, 2, 032002.	2.2	7
62	Directed Concentrating of Micro-/Nanoparticles via Near-Infrared Laser Generated Plasmonic Microbubbles. ACS Omega, 2020, 5, 32481-32489.	1.6	6
63	Constrained regularization for noninvasive glucose sensing using Raman spectroscopy. Journal of Innovative Optical Health Sciences, 2015, 08, 1550022.	0.5	5
64	Magnetic Active Water Filter Membrane for Induced Heating to Remove Biofoulants. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10291-10298.	4.0	5
65	SERS-Based Ultrasensitive Lateral Flow Assay for Quantitative Sensing of Protein Biomarkers. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-8.	1.9	5
66	Morphological, plasmonic and SERS characterization of DC-sputtered gold nanoislands. Biomedical Spectroscopy and Imaging, 2015, 4, 95-103.	1.2	4
67	Imaging the Electrochemical Impedance of Single Cells via Conductive Polymer Thin Film. ACS Sensors, 2021, 6, 485-492.	4.0	4
68	Modeling the surface of fast-cured polymer droplet lenses for precision fabrication. Applied Optics, 2018, 57, 10342.	0.9	4
69	High-throughput Raman and surface-enhanced Raman microscopy. Proceedings of SPIE, 2012, , .	0.8	3
70	Optically Tunable Tin Oxide-Coated Hollow Gold–Silver Nanorattles for Use in Solar-Driven Applications. ACS Omega, 2020, 5, 23769-23777.	1.6	3
71	Exploring the Synergy of Radiative Coupling and Substrate Undercut in Arrayed Gold Nanodisks for Economical, Ultra-Sensitive Label-Free Biosensing. IEEE Sensors Journal, 2021, 21, 23971-23978.	2.4	3
72	A flexible optrode for deep brain neurophotonics. , 2011, , .		2

#	Article	IF	Citations
73	Nanoplasmonic sensing on DNA topological structure functionalized nanoporous gold disks. , 2016, , .		2
74	Hyperspectral expansion microscopy. , 2017, , .		2
75	Oil spill sensor using multispectral infrared imaging via $\#x2113;<$ inf>1 minimization., 2011,,.		1
76	Raman spectroscopy complements optical coherent tomography in tissue classification and cancer detection. , $2015, , .$		1
77	Modeling nanoporous gold plasmonic nanoparticles: Calculation of optical properties. , 2015, , .		1
78	Photothermal inactivation of bacteria on plasmonic nanostructures. Proceedings of SPIE, 2016, , .	0.8	1
79	Portable SERS sensor for malachite green and other small dye molecules. Proceedings of SPIE, 2017, , .	0.8	1
80	Laser-assisted dealloying for direct-write patterning of plasmonic nanostructures. Proceedings of SPIE, $2017, , .$	0.8	1
81	Single-molecule DNA hybridization on nanoporous gold nanoparticle array chip. Proceedings of SPIE, 2017, , .	0.8	1
82	3D plasmonic nanoarchitecture as an emerging biosensing platform. Nanomedicine, 2017, 12, 2577-2580.	1.7	1
83	Label-free Biomolecular Sensing by SERS on Nanoporous Gold Nanoparticle Arrays. , 2018, , .		1
84	Photothermal Generation of Programmable Microbubble Array on Nanoporous Gold Disks. , 2018, , .		1
85	A Miniature Lens Scanner with an Electrothermally-Actuated Micro-Stage. , 2018, , .		1
86	Plasmonic Sensors on Invisible Substrates. , 2019, , .		1
87	Plasmonic metasurfaces for sensing, typing, and killing of pathogens. , 2019, , .		1
88	Wavelength tunable plasmon enhanced photoluminescence from quantum dots. , 2015, , .		0
89	Label-free monitoring of individual DNA hybridization using SERS. Proceedings of SPIE, 2015, , .	0.8	O
90	Monolithic nanoporous gold disks with large surface area and high-density plasmonic hot-spots. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	Citations
91	Stamping SERS for creatinine sensing. Proceedings of SPIE, 2015, , .	0.8	O
92	Monolithically integrated microfluidic nanoporous gold disk (NPGD) surface-enhanced Raman scattering (SERS) sensor for rapid and label-free biomolecular detection. , 2015, , .		0
93	Label-free, multiplexed, molecular sensing and imaging by stamping SERS. , 2015, , .		0
94	Photothermal light harvesting and light-gated molecular release by nanoporous gold disks. , 2015, , .		0
95	Surface-enhanced near-infrared absorption (SENIRA) spectroscopy. , 2016, , .		0
96	Gold nanoparticle decorated AAO filter membrane for SERS sensing of urine acetaminophen. , 2016, , .		0
97	Photothermal generation of microbubbles on plasmonic nanostructures inside microfluidic channels. Proceedings of SPIE, 2016, , .	0.8	0
98	Plasmonic biosensor for label-free G-quadruplexes detection. , 2016, , .		0
99	Raman and surface-enhanced Raman spectroscopy for renal condition monitoring. Proceedings of SPIE, 2016, , .	0.8	0
100	A flexible and rapid frequency selective scheme for SRS microscopy. Proceedings of SPIE, 2017, , .	0.8	0
101	Monitoring adsorption of gold nanoparticles on gold nanodisk array using dark-field hyperspectral microscopy (Conference Presentation). , 2017, , .		0
102	Fabrication and characterization of multi-point side-firing optical fiber by laser micro-ablation (Conference Presentation). , 2017, , .		0
103	DotLens smartphone microscopy for biological and biomedical applications (Conference) Tj ETQq1 1 0.784314 r	gBT /Over	lock 10 Tf 50
104	Tissue Engineering: Effective Light Directed Assembly of Building Blocks with Microscale Control (Small 24/2017). Small, 2017, 13, .	5.2	0
105	New fabrication technique for nanoporous gold nanoparticles (Conference Presentation)., 2017,,.		0
106	Raman spectra and DFT calculations for botryococcene and methylsqualene hydrocarbons from the B race of the green microalga Botryococcus braunii. Journal of Molecular Structure, 2017, 1147, 427-437.	1.8	0
107	Laser micro-ablated multi-point side-firing optical fiber for deep-tissue light delivery. , 2017, , .		0
108	Holographic Microbubble Actuators for Microfluidic Manipulation and Particle Assembly., 2018,,.		0

#	Article	IF	Citations
109	Sensitive and selective nanoplasmonic sensor by functionalized nanoporous gold nanoparticle array chip. Proceedings of SPIE, $2017, \ldots$	0.8	O
110	3D plasmonic nanoarchitectures for extreme light concentration. , 2017, , .		0
111	Local Refractive Index Sensitivity of Nanoporous Gold Nanodisk Array. , 2018, , .		0
112	Holographic photothermal microbubble assisted imaging spectroscopy. , 2019, , .		0
113	Glucose sensing by stamping surface-enhanced Raman spectroscopy (S-SERS)., 2019,,.		0
114	Multiplex sensing of lead and mercury in drinking water using smartphone nano-colorimetry. , 2019, , .		0
115	Smartphone microscopy and nanocolorimetry. , 2019, , .		0
116	Holographic optical tweezers assisted imaging spectroscopy. , 2019, , .		0
117	Gold-Silver Alloy Nanodisk Array for Smartphone Colorimetric Biosensing. , 2019, , .		0
118	Aptamer-based SERS detection and quantitation of small molecules and enzymes on plasmonic nanostructures. , 2019, , .		0
119	Regularizing refractive index sensitivity for disordered plasmonic array. , 2019, , .		0
120	Smartphone light sheet fluorescence microscopy for molecular diagnostics. , 2019, , .		0
121	Dotlens smartphone microscopy and nano-colorimetry., 2019, , .		0
122	Multimodal signal amplification by collaborative plasmonic intensification and catalytic multiplication (c-PI/CM). , 2019, , .		0
123	Thermal optics of ordered arrays of plasmon nanoparticles in context of SERS, cell optoporation, and pathogen destruction., 2019, , .		0
124	Nanoplasmonic imaging of extracellular exosomes on undercut arrayed gold nanodisks. , 2020, , .		0
125	Nanoplasmonic microbubble and nanoplasmonic sensing - two birds in one stone. , 2020, , .		0
126	Smartphone sensing of multiple heavy metal ion contaminants in drinking water. , 2020, , .		0