List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5999082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonpolar Graphene Quantum Dot-Based Hydrophobic Coating from Microwave-Assisted Treatment of Styrofoam Waste. ACS Sustainable Chemistry and Engineering, 2022, 10, 1070-1077.	6.7	6
2	Emulsion templated dual crosslinked core-sheath fibrous matrices for efficient oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128037.	4.7	6
3	Reversal of handedness of ionic liquid-based chiral block copolymers <i>via</i> self-assembly in solution and bulk phase. Polymer Chemistry, 2022, 13, 1911-1919.	3.9	0
4	Non-isothermal crystallization kinetics of confined poly (ethylene oxide) in electrospun nanofibers prepared from polystyrene/ poly (ethylene oxide) blends. Journal of Polymer Research, 2022, 29, 1.	2.4	2
5	Waste cotton cloth derived flexible current collector with optimized electrical properties for high performance lithium–sulfur batteries. Carbon, 2022, 192, 429-437.	10.3	17
6	Bio-inspired design of electrospun poly(acrylonitrile) and novel ionene based nanofibrous mats as highly flexible solid state polymer electrolyte for lithium batteries. Chemical Engineering Journal, 2022, 440, 135926.	12.7	20
7	Excellent electrochemical performance of Lithium-sulfur batteries via self-standing cathode from interwoven α-Fe2O3 integrated carbon nanofiber networks. Journal of Electroanalytical Chemistry, 2021, 880, 114829.	3.8	7
8	Cotton cloth templated <i>in situ</i> encapsulation of sulfur into carbon fibers for lithium–sulfur batteries. Chemical Communications, 2021, 57, 544-547.	4.1	15
9	Nanoparticle-Stabilized Perforated Lamellar Morphology in Block Copolymer/Quantum Dot Hybrids. Macromolecules, 2021, 54, 1216-1223.	4.8	8
10	Handed Mirror Symmetry Breaking at the Photo-Excited State of π-Conjugated Rotamers in Solutions. Symmetry, 2021, 13, 272.	2.2	4
11	Block Copolymer Template-Directed Catalytic Systems: Recent Progress and Perspectives. Membranes, 2021, 11, 318.	3.0	7
12	Enhanced Photoluminescence of Gold Nanoparticleâ€Quantum Dot Hybrids Confined in Hairy Polymer Nanofibers. ChemNanoMat, 2021, 7, 831-841.	2.8	5
13	Frustrated Crystallization behavior of Poly(ethylene oxide) in Electrospun Core-Shell Nanofibers and Beads. Fibers and Polymers, 2021, 22, 2750-2761.	2.1	2
14	Effect of spinning solvent on crystallization behavior of confined polymers in electrospun nanofibers. Polymer Crystallization, 2021, 4, e10209.	0.8	1
15	Fascinating morphology and crystallization behavior of melt miscible binary blends of crystalline homopolymers depicting nearly simultaneous melting transitions. Polymer, 2021, 231, 124119.	3.8	7
16	Melt-diffused binary solid–solid ionic mixture in a porous polymeric host as free-standing solid electrolyte for lithium batteries. Journal of Electroanalytical Chemistry, 2021, 899, 115698.	3.8	6
17	Tuned interactions within inclusion complex to generate electrospun matrices of superior strength. Materials Today Communications, 2021, 29, 102794.	1.9	3
18	Metal oxide heterostructure decorated carbon nanofiber as a novel redox catalyst for high performance Lithium-Sulfur batteries. Applied Surface Science, 2021, 569, 151054.	6.1	12

#	Article	IF	CITATIONS
19	Cellulose-Derived Nanographene Oxide Reinforced Macroporous Scaffolds of High Internal Phase Emulsion-Templated Cross-Linked Poly(ε-caprolactone). Biomacromolecules, 2020, 21, 589-596.	5.4	26
20	Phase transitions of liquid crystal confined in electrospun polymer nanofibres. Bulletin of Materials Science, 2020, 43, 1.	1.7	2
21	Facile synthesis of templated macrocellular nanocomposite scaffold <i>via</i> emulsifier-free HIPE-ROP. Chemical Communications, 2020, 56, 12604-12607.	4.1	9
22	Rheology and Electrospinnability of Supramolecular Comb Polymer Networks Formed via Coordination Interactions. ACS Applied Polymer Materials, 2020, 2, 5094-5109.	4.4	1
23	Polymer-Derived Electrospun Co ₃ O ₄ @C Porous Nanofiber Network for Flexible, High-Performance, and Stable Supercapacitors. ACS Applied Energy Materials, 2020, 3, 11002-11014.	5.1	24
24	Polymer crystallization under dual confinement of High internal phase emulsion templated crosslinked polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124938.	4.7	6
25	Electrospinnability of hydrogen bonded supramolecular comb polymers based on Poly(4-vinylpyridine) and 3-pentadecylphenol. Polymer, 2020, 199, 122594.	3.8	4
26	Nanoparticle assembly under block copolymer confinement: The effect of nanoparticle size and confinement strength. Journal of Colloid and Interface Science, 2020, 578, 441-451.	9.4	8
27	Hollow Au@TiO ₂ porous electrospun nanofibers for catalytic applications. RSC Advances, 2020, 10, 6592-6602.	3.6	12
28	Electrospinning of a Near Gel Resin To Produce Cross-Linked Fibrous Matrices. Langmuir, 2020, 36, 2419-2426.	3.5	10
29	Polymer Nanocomposite Fibers via Self-Assembly. , 2020, , 573-625.		0
30	Fluorescence resonance energy transfer in multifunctional nanofibers designed via block copolymer self-assembly. Physical Chemistry Chemical Physics, 2019, 21, 16137-16146.	2.8	10
31	Bio-inspired poly(3,4-ethylenedioxythiophene): Poly(styrene sulfonate)-sulfur@polyacrylonitrile electrospun nanofibers for lithium-sulfur batteries. Journal of Power Sources, 2019, 431, 250-258.	7.8	32
32	Macroporous scaffolds of cross-linked Poly(É›-caprolactone) via high internal phase emulsion templating. Polymer, 2019, 176, 66-73.	3.8	28
33	Photoluminescent poly(4-vinylpyridine)-based ionic liquids coded with <scp>l</scp> - and <scp>d</scp> -histidine: a supramolecular self-assembly leading to the formation of red-shifted photoluminescent helical aggregates. Polymer Chemistry, 2019, 10, 2734-2740.	3.9	4
34	Amphiphilic Block Copolymer Micelles in Selective Solvents: The Effect of Solvent Selectivity on Micelle Formation. Polymers, 2019, 11, 1882.	4.5	20
35	Functional Nanostructured Materials via Self-Assembly of Block Copolymers. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 1-44.	0.1	2

Crystallization of Polymers in Confined Space. , 2018, , 367-431.

8

#	Article	IF	CITATIONS
37	Supramolecular Route for Enhancing Polymer Electrospinnability. ACS Omega, 2018, 3, 15666-15678.	3.5	7
38	Confinementâ€driven cocrystallization of binary polymer mixtures of different chain length in electrospun nanofibers. Polymer Crystallization, 2018, 1, e10017.	0.8	2
39	Block copolymer compatibilization driven frustrated crystallization in electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. RSC Advances, 2018, 8, 17989-18007.	3.6	6
40	Crystallization behavior of crystalline/crystalline polymer blends under confinement in electrospun nanofibers of polystyrene/poly(ethylene oxide)/poly(ε-caprolactone) ternary mixtures. Soft Matter, 2017, 13, 1569-1582.	2.7	20
41	Electrospun composite matrices from tenside-free poly(ε-caprolactone)-grafted acrylic acid/hydroxyapatite oil-in-water emulsions. Journal of Materials Science, 2017, 52, 2254-2262.	3.7	13
42	Silica-supported Au@hollow-SiO2 particles with outstanding catalytic activity prepared via block copolymer template approach. Journal of Colloid and Interface Science, 2017, 491, 246-254.	9.4	29
43	Ligand displacement induced morphologies in block copolymer/quantum dot hybrids and formation of core–shell hybrid nanoobjects. Physical Chemistry Chemical Physics, 2017, 19, 27651-27663.	2.8	14
44	Hydroxyapatite stabilized pickering emulsions of poly(ε-caprolactone) and their composite electrospun scaffolds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 224-230.	4.7	16
45	Facile Fabrication of Composite Electrospun Nanofibrous Matrices of Poly(ε-caprolactone)–Silica Based Pickering Emulsion. Langmuir, 2017, 33, 8062-8069.	3.5	15
46	Structure and magnetic properties of electrodeposited CoPtP/Pt multilayer nanowires. Chemical Physics Letters, 2017, 684, 378-382.	2.6	5
47	High Internal Phase Emulsion Ringâ€Opening Polymerization of Pentadecanolide: Strategy to Obtain Porous Scaffolds in a Single Step. Macromolecular Chemistry and Physics, 2016, 217, 1752-1758.	2.2	11
48	Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. Soft Matter, 2016, 12, 5110-5120.	2.7	28
49	In-situ monitoring of silica shell growth on PS-b-P4VP micelles as templates using DLS. Polymer, 2016, 107, 485-491.	3.8	4
50	Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions. Materials Science and Engineering C, 2016, 69, 685-691.	7.3	29
51	Emulsion electrospun composite matrices of poly(Îμ-caprolactone)-hydroxyapatite: Strategy for hydroxyapatite confinement and retention on fiber surface. Materials Letters, 2016, 167, 288-296.	2.6	18
52	Morphology of electrospun fibers derived from High Internal Phase Emulsions. Journal of Colloid and Interface Science, 2016, 471, 29-36.	9.4	33
53	Fabrication of titania nanostructures using core–shell polymer nanofibers from block copolymers as templates. Nano Structures Nano Objects, 2016, 6, 14-22.	3.5	12
54	Multifunctional core–shell polymer–inorganic hybrid nanofibers prepared via block copolymer self-assembly. RSC Advances, 2015, 5, 89861-89868.	3.6	12

#	Article	IF	CITATIONS
55	High-Resolution Metal Nanopatterning by Means of Switchable Block Copolymer Templates. ACS Applied Materials & Interfaces, 2015, 7, 12559-12569.	8.0	35
56	Hairy Core–Shell Polymer Nano-objects from Self-Assembled Block Copolymer Structures. ACS Applied Materials & Interfaces, 2015, 7, 12539-12558.	8.0	28
57	Degradation product profiles of melt spun in situ cross-linked poly(ε-caprolactone) fibers. Materials Chemistry and Physics, 2015, 156, 82-88.	4.0	11
58	Thermally Initiated Trans-esterification in Poly(ε-caprolactone) and Its Dependence on Molecular Weight. Journal of Polymers and the Environment, 2014, 22, 479-487.	5.0	4
59	Helical Packing of Nanoparticles Confined in Cylindrical Domains of a Selfâ€Assembled Block Copolymer Structure. Angewandte Chemie - International Edition, 2014, 53, 9090-9093.	13.8	55
60	Conducive 3D porous mesh of poly(ε-caprolactone) made via emulsion electrospinning. Polymer, 2014, 55, 3970-3979.	3.8	25
61	Nanoparticle directed domain orientation in thin films of asymmetric block copolymers. Colloid and Polymer Science, 2014, 292, 2249-2260.	2.1	18
62	Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning — A way to produce high strength biodegradable fibers. Materials Science and Engineering C, 2013, 33, 4213-4220.	7.3	35
63	Synthesis of hollow silica nanostructures using functional hairy polymer nanofibers as templates. RSC Advances, 2013, 3, 24009.	3.6	11
64	A Stepâ€Wise Approach for Dual Nanoparticle Patterning via Block Copolymer Selfâ€Assembly. Advanced Functional Materials, 2013, 23, 483-490.	14.9	45
65	Hairy polymer nanofibers via self-assembly of block copolymers. Journal of Materials Chemistry, 2012, 22, 25102.	6.7	29
66	Mediating polymer crystal orientation using nanotemplates from block copolymer microdomains and anodic aluminium oxide nanochannels. Soft Matter, 2012, 8, 7306.	2.7	48
67	Fabrication of carbon microtubes from thin films of supramolecular assemblies via self-rolling approach. Journal of Materials Chemistry, 2011, 21, 10813.	6.7	19
68	Supramolecular assemblies of block copolymers as templates for fabrication of nanomaterials. European Polymer Journal, 2011, 47, 584-599.	5.4	47
69	Hexagonally ordered arrays of metallic nanodots from thin films of functional block copolymers. Polymer, 2010, 51, 2661-2667.	3.8	35
70	Microphase separation in thin films of supramolecular assemblies composed of a triblock copolymer and lowâ€molecularâ€weight additive. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1594-1605.	2.1	4
71	Thin films of block copolymer supramolecular assemblies: Microphase separation and nanofabrication. Physica Status Solidi (B): Basic Research, 2010, 247, 2458-2469.	1.5	19
72	Polymer Tubes by Rolling of Polymer Bilayers. Materials Research Society Symposia Proceedings, 2010, 1272, 1.	0.1	3

#	Article	IF	CITATIONS
73	Highly ordered arrays of magnetic nanoparticles prepared via block copolymer assembly. Journal of Materials Chemistry, 2010, 20, 7734.	6.7	45
74	Composition-Dependent Morphological Transitions and Pathways in Switching of Fine Structure in Thin Films of Block Copolymer Supramolecular Assemblies. Macromolecules, 2010, 43, 2463-2473.	4.8	66
75	Crystallization in the Binary Blends of Crystallineâ^'Amorphous Diblock Copolymers Bearing Chemically Different Crystalline Block. Macromolecules, 2010, 43, 3376-3382.	4.8	17
76	Arrays of Inorganic Nanodots and Nanowires Using Nanotemplates Based on Switchable Block Copolymer Supramolecular Assemblies. Advanced Functional Materials, 2009, 19, 2805-2811.	14.9	64
77	Electrodeposition of Co–Pt continuous films and nanowires within diblock copolymer template. Electrochimica Acta, 2009, 54, 2536-2539.	5.2	10
78	Nanowear studies in chemically heterogeneous responsive polymeric brushes by surface force microscopy. European Polymer Journal, 2009, 45, 1367-1376.	5.4	10
79	Fabrication of Metallic Microtubes Using Self-Rolled Polymer Tubes as Templates. Langmuir, 2009, 25, 7667-7674.	3.5	32
80	Tetragonally Packed Cylinder Structure of Combâ^'Coil Block Copolymer Bearing Heteroarm Star Architecture. Macromolecules, 2009, 42, 2304-2308.	4.8	14
81	A Novel Approach for the Fabrication of Silica and Silica/Metal Hybrid Microtubes. Chemistry of Materials, 2009, 21, 4282-4287.	6.7	30
82	Highly ordered palladium nanodots and nanowires from switchable block copolymer thin films. Nanotechnology, 2009, 20, 415302.	2.6	43
83	Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chemical Communications, 2009, , 5749.	4.1	204
84	Nanowear studies in reversibly switchable polystyrene–poly(acrylic acid) mixed brushes. Journal of Colloid and Interface Science, 2008, 328, 58-66.	9.4	11
85	Formation of self-rolled polymer microtubes studied by combinatorial approach. European Polymer Journal, 2008, 44, 4115-4121.	5.4	36
86	Molecular Architecture Effect on the Self-Assembly Behavior of Comb-Coil Block Copolymers Displaying Lamellae-within-Lamellae Morphology. Macromolecules, 2008, 41, 8138-8147.	4.8	27
87	Switching of friction by binary polymer brushes. Soft Matter, 2008, 4, 1024.	2.7	97
88	Highly Oriented Nanowires from the Hierarchical Self-Assembly in Supramolecular Complex of Polyaniline with ω-Methoxypoly(ethylene oxide) Phosphates. Macromolecules, 2007, 40, 395-398.	4.8	18
89	Crystallization Kinetics and Crystallization-Induced Morphological Formation in the Blends of Poly(Îμ-caprolactone)-block-polybutadiene and Polybutadiene Homopolymer. Macromolecules, 2007, 40, 5014-5022.	4.8	34
90	Crystallization Behavior of Crystallineâ€Amorphous Diblock Copolymers Consisting of a Rubbery Amorphous Block. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 143-172.	2.2	73

#	Article	IF	CITATIONS
91	Molecular Architecture Effect on Microphase Separation in Supramolecular Combâ^'Coil Complexes of Polystyrene-block-poly(2-vinylpyridine) with Dodecylbenzenesulfonic Acid:Â AnBnHeteroarm Star Copolymer. Macromolecules, 2006, 39, 4460-4468.	4.8	32
92	Correlation between crystallization kinetics and melt phase behavior of crystalline–amorphous block copolymer/homopolymer blends. Polymer, 2005, 46, 11837-11843.	3.8	14
93	Molecular Architecture Effect on the Microphase Separations in Supramolecular Combâ^'Coil Complexes of Polystyrene-block-poly(2-vinylpyridine) with Dodecylbenzenesulfonic Acid:  (AB)nAn Blockâ^'Arm Star Copolymer. Macromolecules, 2005, 38, 10117-10126.	4.8	52
94	Poly(ether ether ketone)/poly(aryl ether sulfone) blends: Melt rheological behavior. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1548-1563.	2.1	45
95	Poly(acrylonitrile-butadiene-styrene)/Poly(ether ether ketone) Blends: an Attempt Towards a Polymer Reinforced Polymer Composite. Macromolecular Materials and Engineering, 2004, 289, 749-756.	3.6	2
96	Self-Assembly and Crystallization in a Supramolecular Hairy Rod Polymer from the Complex of Polyaniline with ω-Methoxy Poly(ethylene oxide) Phosphates. Macromolecules, 2004, 37, 9561-9570.	4.8	24
97	Cocrystallization Behavior in Binary Blend of Crystallineâ^'Amorphous Diblock Copolymers. Macromolecules, 2004, 37, 8175-8179.	4.8	10
98	Poly(ether ether ketone)/poly(aryl ether sulfone) blends: Relationships between morphology and mechanical properties. Journal of Applied Polymer Science, 2003, 90, 2887-2905.	2.6	19
99	Crystallization and melting behavior of poly(ether ether ketone)/poly(aryl ether sulfone) blends. Journal of Applied Polymer Science, 2003, 90, 2906-2918.	2.6	15
100	Poly(ether ether ketone)/poly(aryl ether sulphone) blends: thermal degradation behaviour. European Polymer Journal, 2003, 39, 193-198.	5.4	45
101	Glass transition behaviour of poly(ether ether ketone)/poly(aryl ether sulphone) blends: dynamic mechanical and dielectric relaxation studies. Polymer, 2003, 44, 1267-1279.	3.8	43
102	A selective reaction of polyhydroxy fullerene with cycloaliphatic epoxy resin in designing ether connected epoxy star utilizing fullerene as a molecular core. Polymer, 2003, 44, 3209-3214.	3.8	44
103	Polyetherether ketone/polyarylethersulfone blends: Thermal and compatibility aspects. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1407-1424.	2.1	18
104	Miscibility behaviour of poly(ether ether ketone)/poly(ether ketone) blends – thermal and morphological studies. European Polymer Journal, 2001, 37, 2147-2151.	5.4	12