
David Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5998950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacteria associated with acne use glycosaminoglycans as cell adhesion receptors and promote changes in the expression of the genes involved in their biosynthesis. BMC Microbiology, 2022, 22, 65.	3.3	1
2	Alterations in the Expression of the Genes Responsible for the Synthesis of Heparan Sulfate in Brains With Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2021, 80, 446-456.	1.7	5
3	Immunosuppression by Mutated Calreticulin Released from Malignant Cells. Molecular Cell, 2020, 77, 748-760.e9.	9.7	77
4	Antibacterial effect of silver nanorings. BMC Microbiology, 2020, 20, 172.	3.3	12
5	Association of the <i>POT1</i> Germline Missense Variant p.178T With Familial Melanoma. JAMA Dermatology, 2019, 155, 604.	4.1	34
6	Glycosaminoglycans are differentially involved in bacterial binding to healthy and cystic fibrosis lung cells. Journal of Cystic Fibrosis, 2019, 18, e19-e25.	0.7	8
7	Altered patterns of global protein synthesis and translational fidelity in RPS15-mutated chronic lymphocytic leukemia. Blood, 2018, 132, 2375-2388.	1.4	48
8	Different Use of Cell Surface Glycosaminoglycans As Adherence Receptors to Corneal Cells by Gram Positive and Gram Negative Pathogens. Frontiers in Cellular and Infection Microbiology, 2016, 6, 173.	3.9	20
9	Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14. Data in Brief, 2016, 7, 299-310.	1.0	21
10	Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biology, 2016, 49, 37-60.	3.6	177
11	Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic leukemia. Blood, 2015, 126, 195-202.	1.4	50
12	Molecular pathogenesis of CLL and its evolution. International Journal of Hematology, 2015, 101, 219-228.	1.6	19
13	The common marmoset genome provides insight into primate biology and evolution. Nature Genetics, 2014, 46, 850-857.	21.4	225
14	Frequent somatic mutations in components of the RNA processing machinery in chronic lymphocytic leukemia. Leukemia, 2013, 27, 1600-1603.	7.2	28
15	The genomic landscape of chronic lymphocytic leukemia: clinical implications. BMC Medicine, 2013, 11, 124.	5.5	35
16	POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nature Genetics, 2013, 45, 526-530.	21.4	236
17	Next-generation sequencing reveals the secrets of the chronic lymphocytic leukemia genome. Clinical and Translational Oncology, 2013, 15, 3-8.	2.4	41
18	Functional analysis of sucrase–isomaltase mutations from chronic lymphocytic leukemia patients. Human Molecular Genetics, 2013, 22, 2273-2282.	2.9	25

DAVID RODRIGUEZ

#	Article	IF	CITATIONS
19	Deubiquitinases in cancer: new functions and therapeutic options. Oncogene, 2012, 31, 2373-2388.	5.9	401
20	Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 39-54.	4.1	449
21	Matrix metalloproteinase proteomics: substrates, targets, and therapy. Current Opinion in Cell Biology, 2009, 21, 645-653.	5.4	239
22	Metadegradomics. Molecular and Cellular Proteomics, 2008, 7, 1925-1951.	3.8	134
23	MtmMII-mediated C-Methylation during Biosynthesis of the Antitumor Drug Mithramycin Is Essential for Biological Activity and DNA-Drug Interaction. Journal of Biological Chemistry, 2004, 279, 8149-8158.	3.4	18
24	Purification and Characterization of a Monooxygenase Involved in the Biosynthetic Pathway of the Antitumor Drug Mithramycin. Journal of Bacteriology, 2003, 185, 3962-3965.	2.2	28
25	Functional Analysis of OleY I -Oleandrosyl 3- O -Methyltransferase of the Oleandomycin Biosynthetic Pathway in Streptomyces antibioticus. Journal of Bacteriology, 2001, 183, 5358-5363.	2.2	47