Fernando Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5998799/publications.pdf

Version: 2024-02-01

539 papers 14,209 citations

54 h-index 96 g-index

543 all docs 543
docs citations

543 times ranked

8287 citing authors

#	Article	IF	CITATIONS
1	Publisher Correction: Angle-dependent interferences in electron emission accompanying stimulated Compton scattering from molecules. Communications Physics, 2022, 5, .	2.0	30
2	Controlling the diversity of ion-induced fragmentation pathways by <i>N</i> -methylation of amino acids. Physical Chemistry Chemical Physics, 2022, 24, 941-954.	1.3	3
3	A simple model to engineer single-molecule conductance of acenes by chemical disubstitution. Nanoscale, 2022, 14, 464-472.	2.8	2
4	Isolating Attosecond Electron Dynamics in Molecules where Nuclei Move Fast. Physical Review Letters, 2022, 128, 063001.	2.9	15
5	Vibrationally resolved photoelectron angular distributions of ammonia. Physical Chemistry Chemical Physics, 2022, 24, 7700-7712.	1.3	1
6	Attosecond photoionisation time delays reveal the anisotropy of the molecular potential in the recoil frame. Nature Communications, 2022, 13, 1242.	5.8	28
7	Scattering effects from neighboring atoms in core-level <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2<td>l:mt.1<td>ml::@isub></td></td></mml:mn></mml:msub></mml:math>	l:m t.1 <td>ml::@isub></td>	ml::@isub>
8	Asymmetric electron angular distributions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> induced by intense ultrashort soft-x-ray laser pulses. Physical Review A, 2022, 105, .	1.0	1
9	Cluster approach to scattering in MoS2 photoemission. Chemical Physics, 2022, 557, 111476.	0.9	1
10	Real-space subfemtosecond imaging of quantum electronic coherences in molecules. Nature Photonics, 2022, 16, 196-202.	15.6	32
11	Probing electronic decoherence with high-resolution attosecond photoelectron interferometry. European Physical Journal D, 2022, 76, .	0.6	7
12	Molecular fragmentation as a way to reveal early electron dynamics induced by attosecond pulses. Faraday Discussions, 2021, 228, 349-377.	1.6	13
13	Singleâ€Molecule Conductance of 1,4â€Azaborine Derivatives as Models of BNâ€doped PAHs. Angewandte Chemie - International Edition, 2021, 60, 6609-6616.	7.2	20
14	Normal and off-normal incidence dissociative dynamics of O ₂ (<i>v</i> , <i>J</i>) on ultrathin Cu films grown on Ru(0001). Physical Chemistry Chemical Physics, 2021, 23, 7768-7776.	1.3	0
15	Efficient photogeneration of nonacene on nanostructured graphene. Nanoscale Horizons, 2021, 6, 744-750.	4.1	9
16	Selecting two-photon sequential ionization pathways in H2 through harmonic filtering. Physical Chemistry Chemical Physics, 2021, 23, 22395-22403.	1.3	1
17	Imaging intramolecular hydrogen migration with time- and momentum-resolved photoelectron diffraction. Physical Chemistry Chemical Physics, 2021, 23, 20174-20182.	1.3	11
18	Attosecond x-ray transient absorption spectroscopy in graphene. Physical Review Research, 2021, 3, .	1.3	10

#	Article	lF	CITATIONS
19	Singleâ€Molecule Conductance of 1,4â€Azaborine Derivatives as Models of BNâ€doped PAHs. Angewandte Chemie, 2021, 133, 6683-6690.	1.6	2
20	Towards the complete phase profiling of attosecond wave packets. Physical Review Research, 2021, 3, .	1.3	7
21	Charge and energy sharing in the fragmentation of astrophysically relevant carbon clusters. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	1
22	Theoretical study of structural and electronic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mi>H<td>mi>1/1mml:</td><td>mraw></td></mml:mi></mml:mrow></mml:math>	mi> 1/1 mml:	mraw>
23	Attosecond Ionization Time Delay Around a Shape Resonance in Nitrogen Measured by the RABBIT-2ω method., 2021,,.		1
24	Molecular-Frame Photoelectron Angular Distributions of CO in the Vicinity of Feshbach Resonances: An XCHEM Approach. Journal of Chemical Theory and Computation, 2021, 17, 6330-6339.	2.3	9
25	Timing of charge migration in betaine by impact of fast atomic ions. Science Advances, 2021, 7, eabg9080.	4.7	2
26	Attosecond laser control of photoelectron angular distributions in XUV-induced ionization of H ₂ . Faraday Discussions, 2021, 228, 378-393.	1.6	5
27	Angle-dependent interferences in electron emission accompanying stimulated Compton scattering from molecules. Communications Physics, 2021, 4, .	2.0	3
28	Ultrafast molecular dynamics in ionized 1 - and 2 -propanol: from simple fragmentation to complex isomerization and roaming mechanisms. Physical Chemistry Chemical Physics, 2021, 24, 433-443.	1.3	11
29	The quantum chemistry of attosecond molecular science. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1430.	6.2	50
30	H ₂ photoionization induced by XUV pulses and X-ray free electron lasers. Journal of Physics: Conference Series, 2020, 1412, 072042.	0.3	0
31	A look into the photoionization of medium-sized molecular systems from an XCHEM perspective. Journal of Physics: Conference Series, 2020, 1412, 152049.	0.3	O
32	UV-pump/UV-probe spectroscopy of N2. Journal of Physics: Conference Series, 2020, 1412, 072037.	0.3	0
33	Polypeptide formation in clusters of \hat{l}^2 -alanine amino acids by single ion impact. Nature Communications, 2020, 11, 3818.	5.8	22
34	Attosecond timing of electron emission from a molecular shape resonance. Science Advances, 2020, 6, eaba7762.	4.7	57
35	Defect formation in a graphene overlayer on ruthenium under high pressure. Physical Review B, 2020, 102, .	1.1	О
36	Quantum state holography to reconstruct the molecular wave packet using an attosecond XUV–XUV pump-probe technique. Scientific Reports, 2020, 10, 12981.	1.6	11

#	Article	IF	Citations
37	Hydrogenated polycyclic aromatic hydrocarbons: isomerism and aromaticity. Physical Chemistry Chemical Physics, 2020, 22, 21968-21976.	1.3	7
38	Accurate simulations of atomic diffractive scattering from KCl(0 0 1) under fast grazing incidence conditions. Nuclear Instruments & Methods in Physics Research B, 2020, 476, 1-9.	0.6	5
39	Disentangling spectral phases of interfering autoionizing states from attosecond interferometric measurements. Journal of Physics: Conference Series, 2020, 1412, 072010.	0.3	0
40	Attosecond XUV-pump/XUV-probe spectroscopy of glycine. Journal of Physics: Conference Series, 2020, 1412, 072036.	0.3	0
41	Ultrafast Laser-Induced Isomerization Dynamics in Acetonitrile. Journal of Physical Chemistry Letters, 2020, 11, 6724-6729.	2.1	21
42	Spin–orbit-resolved spectral phase measurements around a Fano resonance. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 184003.	0.6	11
43	High harmonic generation-2ω attosecond stereo-photoionization interferometry in N ₂ . JPhys Photonics, 2020, 2, 024003.	2.2	15
44	Time delays from one-photon transitions in the continuum. Optica, 2020, 7, 154.	4.8	57
45	Isomers of Hydrogenated Polycyclic Aromatic Hydrocarbons Explain the Presence of Infrared Bands in the 3 \hat{l} 4m Region. Astrophysical Journal, 2020, 899, 18.	1.6	5
46	High-order phase measurements of attosecond wave packets. , 2020, , .		0
47	Atomic and Molecular Scattering Applications in an Apache Airavata Science Gateway. , 2020, , .		3
48	Attosecond Interferometry Using a HHG-2ï Scheme. Studia Universitatis BabeÈ™-Bolyai Physica, 2020, 65, 35-47.	0.0	1
49	Time delays from one-photon transitions in the continuum. , 2020, , .		0
50	Time delays from one-photon transitions in the continuum. , 2020, , .		0
51	Resonant photoionization of O ₂ up to the fourth ionization threshold. Physical Chemistry Chemical Physics, 2019, 21, 16497-16504.	1.3	10
52	Roadmap on photonic, electronic and atomic collision physics: I. Light–matter interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 171001.	0.6	52
53	Disentangling Spectral Phases of Interfering Autoionizing States from Attosecond Interferometric Measurements. Physical Review Letters, 2019, 122, 253203.	2.9	26
54	Time-resolved molecular dynamics of single and double hydrogen migration in ethanol. Nature Communications, 2019, 10, 2813.	5.8	36

#	Article	IF	Citations
55	Prominent out-of-plane diffraction in helium scattering from a methyl-terminated Si(111) surface. Physical Chemistry Chemical Physics, 2019, 21, 15879-15887.	1.3	2
56	High harmonic generation in crystals using maximally localized Wannier functions. Physical Review B, 2019, 100, .	1.1	49
57	Tunable Graphene Electronics with Local Ultrahigh Pressure. Advanced Functional Materials, 2019, 29, 1806715.	7.8	15
58	Coupled nuclear-electronic dynamics in photoionization of H2. EPJ Web of Conferences, 2019, 205, 06004.	0.1	0
59	Full-dimensional theoretical description of vibrationally resolved valence-shell photoionization of H2O. Structural Dynamics, 2019, 6, 054101.	0.9	7
60	Quantum Stereodynamics of H ₂ Scattering from Co(0001): Influence of Reaction Channels. Journal of Physical Chemistry C, 2019, 123, 16223-16231.	1.5	8
61	Fully versus constrained statistical fragmentation of carbon clusters and their heteronuclear derivatives. Journal of Chemical Physics, 2019, 150, 144301.	1.2	4
62	Ultrafast imaging of laser-controlled non-adiabatic dynamics in NO ₂ from time-resolved photoelectron emission. Physical Chemistry Chemical Physics, 2019, 21, 10038-10051.	1.3	8
63	Charge migration in photo-ionized aromatic amino acids. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20170472.	1.6	15
64	Theoretical Study of NO Dissociation on an Open Flat Ru(101i1) Surface. Journal of Physical Chemistry C, 2019, 123, 5488-5494.	1.5	0
65	Control defeasance by anti-alignment in the excited state. Physical Chemistry Chemical Physics, 2019, 21, 23620-23625.	1.3	4
66	Site-selective-induced isomerization of formamide. Physical Chemistry Chemical Physics, 2019, 21, 25626-25634.	1.3	6
67	Resonant Photoelectron Confinement in the SF ₆ Molecule. Journal of Physical Chemistry A, 2019, 123, 1062-1068.	1.1	5
68	Performance of van der Waals DFT approaches for helium diffraction on metal surfaces. Journal of Physics Condensed Matter, 2019, 31, 135901.	0.7	4
69	Aromaticity, Coulomb repulsion, π delocalization or strain: who is who in endohedral metallofullerene stability?. Physical Chemistry Chemical Physics, 2019, 21, 124-131.	1.3	7
70	Anisotropic photoemission time delays close to a Fano resonance. Nature Communications, 2018, 9, 955.	5.8	116
71	Time–frequency representation of autoionization dynamics in helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 044002.	0.6	41
72	Attosecond coupled electron and nuclear dynamics in dissociative ionization of H2. Nature Physics, 2018, 14, 733-738.	6.5	102

#	Article	IF	Citations
73	Topology-Based Approach to Predict Relative Stabilities of Charged and Functionalized Fullerenes. Journal of Chemical Theory and Computation, 2018, 14, 1791-1810.	2.3	21
74	Electron Correlation in the Ionization Continuum of Molecules: Photoionization of N ₂ in the Vicinity of the Hopfield Series of Autoionizing States. Journal of Physical Chemistry Letters, 2018, 9, 756-762.	2.1	30
75	Electronic Properties of Sulfur Covered Ru(0001) Surfaces. Journal of Physical Chemistry A, 2018, 122, 2232-2240.	1.1	2
76	Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pumpâ \in IR-probe spectroscopy. Physical Review A, 2018, 97, .	1.0	2
77	Coverage evolution of the unoccupied Density of States in sulfur superstructures on Ru(0001). Applied Surface Science, 2018, 433, 300-305.	3.1	3
78	A pump–probe scheme with a single chirped pulse to image electron and nuclear dynamics in molecules. New Journal of Physics, 2018, 20, 123004.	1.2	6
79	Graphene catalyzes the reversible formation of a C–C bond between two molecules. Science Advances, 2018, 4, eaau9366.	4.7	9
80	Partial cross sections and interfering resonances in photoionization of molecular nitrogen. Physical Review A, 2018, 98, .	1.0	11
81	Control of <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mro>2</mml:mro></mml:mrow></mml:msub><td>ub>2/9nml:</td><td>mrotov></td></mml:mrow></mml:math>	ub> 2/9 nml:	mrotov>
82	Physical Review Letters, 2016, 121, 103002. Tribute to Manuel Yáñez and Otilia Mó. Journal of Physical Chemistry A, 2018, 122, 5671-5672.	1.1	0
83	Attosecond Pump–Probe Spectroscopy of Charge Dynamics in Tryptophan. Journal of Physical Chemistry Letters, 2018, 9, 4570-4577.	2.1	74
84	Realâ€Time Imaging of Ultrafast Charge Dynamics in Tetrafluoromethane from Attosecond Pumpâ€Probe Photoelectron Spectroscopy. Chemistry - A European Journal, 2018, 24, 12061-12070.	1.7	16
85	Reconstruction of the time-dependent electronic wave packet arising from molecular autoionization. Science Advances, 2018, 4, eaat3962.	4.7	14
86	Thickness-Dependent Reactivity of O $<$ sub $>$ 2 $<$ /sub $>$ on Cu Layers Grown on Ru(0001) Surfaces. Journal of Physical Chemistry C, 2018, 122, 15529-15538.	1.5	8
87	Revealing the role of electron-electron correlations by mapping dissociation of highly excited D2+ using ultrashort XUV pulses. Physical Review A, 2018, 97, .	1.0	5
88	Including London Dispersion Forces in Density Functional Theory (DFT + D): Applications to Molecule(Atom)/Surface Phenomena., 2018,, 1-9.		0
89	Relative Stability of Empty Exohedral Fullerenes: π Delocalization versus Strain and Steric Hindrance. Journal of the American Chemical Society, 2017, 139, 1609-1617.	6.6	36
90	Mapping and controlling ultrafast dynamics of highly excited <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> molecules by VUV-IR pump-probe schemes. Physical Review A, 2017, 95, .	1.0	10

#	Article	IF	CITATIONS
91	Screening effects on the electronic structure of the hydrogen molecular ion. Physical Review A, 2017, 95, .	1.0	9
92	Role of electron-nuclear coupled dynamics on charge migration induced by attosecond pulses in glycine. Chemical Physics Letters, 2017, 683, 357-364.	1.2	34
93	Attosecond Electron Dynamics in Molecules. Chemical Reviews, 2017, 117, 10760-10825.	23.0	367
94	Potential Energy Surfaces of Core-Hole and Shake-Up States for Dissociative Ionization Studies. Journal of Chemical Theory and Computation, 2017, 13, 1723-1736.	2.3	18
95	Generalized structural motif model for studying the thermodynamic stability of fullerenes: from C ₆₀ to graphene passing through giant fullerenes. Physical Chemistry Chemical Physics, 2017, 19, 19646-19655.	1.3	9
96	Hybrid-Basis Close-Coupling Interface to Quantum Chemistry Packages for the Treatment of Ionization Problems. Journal of Chemical Theory and Computation, 2017, 13, 499-514.	2.3	54
97	Exploring surface landscapes with molecules: rotationally induced diffraction of H ₂ on LiF(001) under fast grazing incidence conditions. Physical Chemistry Chemical Physics, 2017, 19, 16317-16322.	1.3	8
98	Ultrafast charge dynamics in glycine induced by attosecond pulses. Physical Chemistry Chemical Physics, 2017, 19, 19767-19776.	1.3	34
99	Production of doubly-charged highly reactive species from the long-chain amino acid GABA initiated by Ar ⁹⁺ ionization. Physical Chemistry Chemical Physics, 2017, 19, 19609-19618.	1.3	13
100	Dissociative and non-dissociative adsorption of O $<$ sub $>$ 2 $<$ /sub $>$ on Cu (111) and Cu $<$ sub $>$ ML $<$ /sub $>$ /Ru (0001) surfaces: adiabaticity takes over. Physical Chemistry Chemical Physics, 2017, 19, 10217-10221.	1.3	20
101	M ₃ C: A Computational Approach To Describe Statistical Fragmentation of Excited Molecules and Clusters. Journal of Chemical Theory and Computation, 2017, 13, 992-1009.	2.3	20
102	Tuning Intermolecular Charge Transfer in Donor–Acceptor Two-Dimensional Crystals on Metal Surfaces. Journal of Physical Chemistry C, 2017, 121, 23505-23510.	1.5	11
103	Imaging ultrafast molecular wave packets with a single chirped UV pulse. Physical Review A, 2017, 95, .	1.0	6
104	Control of photoemission delay in resonant two-photon transitions. Journal of Physics: Conference Series, 2017, 875, 022040.	0.3	1
105	Control of photoemission delay in resonant two-photon transitions. Physical Review A, 2017, 95, .	1.0	27
106	Photoionization using the xchem approach: Total and partial cross sections of Ne and resonance parameters above the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:msup><mml: .<="" 2017,="" 96,="" a,="" physical="" review="" td="" threshold.=""><td>mi>s?/mm</td><td>ıl:mi><mml:m< td=""></mml:m<></td></mml:></mml:msup></mml:mrow></mml:math>	mi>s?/mm	ıl:mi> <mml:m< td=""></mml:m<>
107	<pre></pre>	mm :mi> <n 1.1</n 	nml:mrow> <n< td=""></n<>
108	A molecular clock for autoionization decay. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 144001.	0.6	2

#	Article	IF	Citations
109	Attosecond transient absorption spectroscopy of helium above the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>N</mml:mi><mml:mo>=</mml:mo>ionization threshold. Physical Review A, 2017, 96, .</mml:mrow></mml:math>	1/0 ml:mn	x2
110	Effect of potential screening on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> autoionizing states. Physical Review A, 2017, 96, .	1.0	0
111	Imaging the square of the correlated two-electron wave function of a hydrogen molecule. Nature Communications, 2017, 8, 2266.	5.8	28
112	Excitation and fragmentation in high velocity C _n N ⁺ - He collisions. Journal of Physics: Conference Series, 2017, 875, 102022.	0.3	1
113	Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. Advanced Materials, 2016, 28, 6332-6336.	11.1	444
114	Fragmentation network of doubly charged methionine: Interpretation using graph theory. Journal of Chemical Physics, 2016, 145, 094302.	1.2	3
115	Structural dynamics: general discussion. Faraday Discussions, 2016, 194, 583-620.	1.6	O
116	Attosecond processes and X-ray spectroscopy: general discussion. Faraday Discussions, 2016, 194, 427-462.	1.6	0
117	Electronic and non-adiabatic dynamics: general discussion. Faraday Discussions, 2016, 194, 209-257.	1.6	3
118	Experimental and theoretical study of rotationally inelastic diffraction of H2(D2) from methyl-terminated Si(111). Journal of Chemical Physics, 2016, 145, 084705.	1.2	3
119	Even harmonic generation in isotropic media of dissociating homonuclear molecules. Scientific Reports, 2016, 6, 32653.	1.6	29
120	Angular dependence of photoemission time delay in helium. Physical Review A, 2016, 94, .	1.0	119
121	Diffraction of H from LiF(001): From slow normal incidence to fast grazing incidence. Nuclear Instruments & Methods in Physics Research B, 2016, 382, 49-53.	0.6	22
122	Understanding the self-assembly of TCNQ on $Cu(111)$: a combined study based on scanning tunnelling microscopy experiments and density functional theory simulations. RSC Advances, 2016, 6, 15071-15079.	1.7	22
123	Adsorption of Hydrogen Molecules on Carbon Nanotubes Using Quantum Chemistry and Molecular Dynamics. Journal of Physical Chemistry A, 2016, 120, 6451-6458.	1.1	45
124	Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy. Physical Review A, 2016, 94, .	1.0	41
125	Determination of Energy-Transfer Distributions in Ionizing Ion-Molecule Collisions. Physical Review Letters, 2016, 117, 073201.	2.9	39
126	Decoherence, control and attosecond probing of XUV-induced charge migration in biomolecules. A theoretical outlook. Faraday Discussions, 2016, 194, 41-59.	1.6	43

#	Article	IF	CITATIONS
127	Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses. Physical Review Letters, 2016, 117, 093003.	2.9	55
128	Two-Particle Interference of Electron Pairs on a Molecular Level. Physical Review Letters, 2016, 117, 083002.	2.9	25
129	Atomically resolved phase transition of fullerene cations solvated in helium droplets. Nature Communications, 2016, 7, 13550.	5.8	84
130	Two-photon finite-pulse model for resonant transitions in attosecond experiments. Physical Review A, 2016, 93, .	1.0	51
131	Role of van der Waals forces in the diffraction of noble gases from metal surfaces. Physical Review B, 2016, 93, .	1.1	21
132	Thermal Transition from a Disordered, 2D Network to a Regular, 1D, Fe(II)–DCNQI Coordination Network. Journal of Physical Chemistry C, 2016, 120, 16712-16721.	1.5	4
133	Charge migration induced by attosecond pulses in bio-relevant molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 142001.	0.6	80
134	Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nature Communications, 2016, 7, 10566.	5.8	119
135	Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron. Science, 2016, 354, 734-738.	6.0	213
136	Tuning high-harmonic generation by controlled deposition of ultrathin ionic layers on metal surfaces. Physical Review B, 2016, 94, .	1.1	3
137	Theoretical study of the interaction between molecular hydrogen and [MC ₆₀] ⁺ complexes. RSC Advances, 2016, 6, 27447-27451.	1.7	7
138	Key Structural Motifs To Predict the Cage Topology in Endohedral Metallofullerenes. Journal of the American Chemical Society, 2016, 138, 1551-1560.	6.6	36
139	Photoelectron diffraction in methane probed via vibrationally resolved inner-valence photoionization cross-section ratios. Physical Chemistry Chemical Physics, 2016, 18, 3214-3222.	1.3	4
140	Structure, Ionization, and Fragmentation of Neutral and Positively Charged Hydrogenated Carbon Clusters: $C < sub > (i > n < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < i > c sub > (i > m < sub > (i > m < i > c sub > (i > m < sub > (i > m <$	ETiQiqO 0 (O r g® T /Overl
141	Ultrafast Charge Dynamics Induced by XUV Attosecond Pulses in Bio-relevant Molecules. , 2016, , .		0
142	Dressing effects in the attosecond transient absorption spectra of doubly excited states in helium. Physical Review A, 2015, 91, .	1.0	30
143	Energy- and angle-resolved ionization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mtext> H </mml:mtext> + </mml:msub></mml:mrow> </mml:math> interacting with xuv subfemtosecond laser pulses. Physical Review A. 2015. 92	mml:mn>2 1.0	2 <u mml:mn><
144	Two-photon double ionization of atomic beryllium with ultrashort laser pulses. Physical Review A, 2015, 92, .	1.0	8

#	Article	IF	CITATIONS
145	Mapping the Dissociative Ionization Dynamics of Molecular Nitrogen with Attosecond Time Resolution. Physical Review X, 2015, 5, .	2.8	25
146	Sub-laser-cycle control of coupled electron–nuclear dynamics at a conical intersection. New Journal of Physics, 2015, 17, 113023.	1.2	13
147	Dynamical effects in the vibrationally resolved C 2s ⁻¹ photoionization cross section ratios of Methane. Journal of Physics: Conference Series, 2015, 635, 112048.	0.3	0
148	Describing ionization of small molecules with a Gaussian and B-Splines Mixed Basis (GABS). Journal of Physics: Conference Series, 2015, 635, 112110.	0.3	2
149	Vibrationally resolved B 1s photoionization cross section of BF ₃ . Journal of Physics: Conference Series, 2015, 635, 112134.	0.3	0
150	Structure, Ionization and Fragmentation of Neutral and Positively Charged Hydrogenated Carbon Clusters: $C \cdot sub \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot H \cdot sup \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot H \cdot sup \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot H \cdot sup \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot H \cdot sup \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot H \cdot sup \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot (i \cdot n \cdot / sub \cdot (i \cdot n \cdot / i \cdot v \cdot / sub \cdot (i \cdot n \cdot / sub$	EToQaqOO() n g BT /Overlo
151	Attosecond transient absorption spectroscopy of molecular hydrogen. Journal of Physics: Conference Series, 2015, 635, 112070.	0.3	1
152	Merging quantum chemistry packages with B-splines for the multichannel scattering problem. Journal of Physics: Conference Series, 2015, 635, 092013.	0.3	2
153	Surfaceâ€Supported Robust 2D Lanthanideâ€Carboxylate Coordination Networks. Small, 2015, 11, 6358-6364.	5.2	43
154	Molecular dynamics of photodissociation: towards more complex systems. Journal of Physics: Conference Series, 2015, 635, 112105.	0.3	1
155	Understanding the rotational excitation in scattering of D ₂ from CH ₃ -Si(111). Journal of Physics: Conference Series, 2015, 635, 032007.	0.3	0
156	Breakdown curves of carbon-based molecules for astrochemistry. Journal of Physics: Conference Series, 2015, 635, 032107.	0.3	0
157	Theoretical Modeling of Mass Spectrometry. Journal of Physics: Conference Series, 2015, 635, 072060.	0.3	0
158	Phase Measurement of a Fano Resonance Using Tunable Attosecond Pulses. Journal of Physics: Conference Series, 2015, 635, 092137.	0.3	0
159	High-Order Harmonic Generation from the Cu(111) surface. Journal of Physics: Conference Series, 2015, 635, 102010.	0.3	0
160	Control of ionization and dissociation of H2+by elliptically polarized ultra-short VUV laser pulses. Journal of Physics: Conference Series, 2015, 635, 112037.	0.3	0
161	Finite element DVR method for molecular single and double ionization by strong laser pulses. Journal of Physics: Conference Series, 2015, 635, 112042.	0.3	O
162	X-ray induced fragmentation dynamics of doubly charged L-alanine in gas phase. Journal of Physics: Conference Series, 2015, 635, 112094.	0.3	1

#	Article	IF	CITATIONS
163	Excitation of vibrational modes in the ionization of water molecule by XUV/X-ray radiation. Journal of Physics: Conference Series, 2015, 635, 112098.	0.3	0
164	Mapping the dissociative ionization dynamics of molecular nitrogen with attosecond resolution. Journal of Physics: Conference Series, 2015, 635, 112101.	0.3	0
165	Molecular Resolvent Operator for H ₂ ⁺ molecule. Journal of Physics: Conference Series, 2015, 635, 112107.	0.3	0
166	An ab initio multiconfigurational description of core hole and shake up excited states in small molecules. Journal of Physics: Conference Series, 2015, 635, 112111.	0.3	0
167	Theoretical study of noble gases diffraction from Ru(0001) using van der Waals DFT-based potentials. Journal of Physics: Conference Series, 2015, 635, 032004.	0.3	0
168	Slow ion interaction with N-methylglycine and N-acetylglycine. Journal of Physics: Conference Series, 2015, 635, 032054.	0.3	0
169	Plasma screening effects in molecular hydrogen: modified energies and lifetimes of doubly excited states. Journal of Physics: Conference Series, 2015, 635, 072026.	0.3	0
170	Modulation of Attosecond Beating in Resonant Two-Photon Ionization. Journal of Physics: Conference Series, 2015, 635, 092011.	0.3	0
171	Molecular dynamics studies of impulse driven reactions in molecules and molecular clusters. Journal of Physics: Conference Series, 2015, 635, 032043.	0.3	1
172	Modulation of Attosecond Beating by Resonant Two-Photon Transition. Journal of Physics: Conference Series, 2015, 635, 012005.	0.3	1
173	The role of the initial ro-vibrational state in molecule/surface scattering under fast grazing incidence. Journal of Physics: Conference Series, 2015, 635, 012029.	0.3	1
174	Molecular interferometer using XUV attosecond pulses to unravel electron and nuclear dynamics. Journal of Physics: Conference Series, 2015, 635, 112039.	0.3	0
175	Controlling high harmonic generation in diatomic molecules by phase shaped laser pulses. Journal of Physics: Conference Series, 2015, 635, 112076.	0.3	0
176	Mapping ultrafast dynamics of highly excited D ₂ ⁺ by ultrashort XUV pump - IR probe radiation. Journal of Physics: Conference Series, 2015, 635, 112080.	0.3	0
177	Six-dimensional theoretical study of H ₂ scattering from LiF(001): From thermal to high incidence energies. Journal of Physics: Conference Series, 2015, 635, 032012.	0.3	0
178	Unusual hydrogen and hydroxyl migration in the fragmentation of excited doubly-positively-charged amino acids in the gas phase. Journal of Physics: Conference Series, 2015, 635, 032037.	0.3	0
179	Fusion reaction dynamics of fullerene molecules. Journal of Physics: Conference Series, 2015, 635, 032093.	0.3	0
180	Molecular structure of one-electron diatomic molecules subject to plasma screening and its effect on the dynamics. Journal of Physics: Conference Series, 2015, 635, 072084.	0.3	0

#	Article	IF	CITATIONS
181	Dressing Effects in the Attosecond Transient Absorption Spectra of Doubly-Excited States in Helium. Journal of Physics: Conference Series, 2015, 635, 092015.	0.3	O
182	Time delay anisotropy in photoelectron emission from isotropic helium. Journal of Physics: Conference Series, 2015, 635, 092089.	0.3	1
183	Electron streaking in the autoionization region of H2. Journal of Physics: Conference Series, 2015, 635, 112040.	0.3	0
184	Theoretical Study of Ultrafast Electron Dynamics in Amino Acids. Journal of Physics: Conference Series, 2015, 635, 112129.	0.3	0
185	Charge and energy flows in ionised thymidine. Journal of Physics: Conference Series, 2015, 635, 032072.	0.3	0
186	Unusual hydroxyl migration in the fragmentation of \hat{l}^2 -alanine dication in the gas phase. Physical Chemistry Chemical Physics, 2015, 17, 16767-16778.	1.3	29
187	Observation of charge migration in amino acids. , 2015, , .		0
188	Theoretical methods for attosecond electron and nuclear dynamics: applications to the H ₂ molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 242001.	0.6	50
189	Adsorption of Benzene on Cu(100) and on Cu(100) Covered with an Ultrathin NaCl Film: Molecule–Substrate Interaction and Decoupling. Journal of Physical Chemistry C, 2015, 119, 4062-4071.	1.5	20
190	Thought experiments made real. Nature Photonics, 2015, 9, 76-77.	15.6	3
191	Oscillating molecular dipoles require strongly correlated electronic and nuclear motion. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 043001.	0.6	14
192	Scattering of H(D) from LiF(100) under fast grazing incidence conditions: To what extent is classical dynamics a useful tool? Nuclear Instruments & Methods in Physics Research B, 2015, 354, 9-15.	0.6	9
193	Internal energy dependence in x-ray-induced molecular fragmentation: An experimental and theoretical study of thiophene. Physical Review A, 2015, 91, .	1.0	36
194	Signatures of attosecond electronic–nuclear dynamics in the one-photon ionization of molecular hydrogen: analytical model versus <i>ab initio</i> calculations. New Journal of Physics, 2015, 17, 053011.	1.2	8
195	Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions. Journal of Physical Chemistry Letters, 2015, 6, 1536-1542.	2.1	62
196	Vibrationally Resolved B 1s Photoionization Cross Section of BF ₃ . Journal of Physical Chemistry A, 2015, 119, 5971-5978.	1.1	12
197	Ultrafast Charge Dynamics in an Amino Acid Induced by Attosecond Pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-12.	1.9	19
198	Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers. Nature Chemistry, 2015, 7, 927-934.	6.6	41

#	Article	IF	Citations
199	<i>>N</i> -Acetylglycine Cation Tautomerization Enabled by the Peptide Bond. Journal of Physical Chemistry A, 2015, 119, 9581-9589.	1.1	5
200	Sub-4-fs Charge Migration in Phenylalanine. Springer Proceedings in Physics, 2015, , 52-55.	0.1	0
201	Modulation of Attosecond Beating in Resonant Two-Photon Ionization. Physical Review Letters, 2014, 113, 263001.	2.9	58
202	Molecular interferometer to decode attosecond electron–nuclear dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3973-3978.	3.3	34
203	Vibrationally resolved C 1s photoionization cross section of CF ₄ . Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 124032.	0.6	11
204	Bonding in exohedral metal–fullerene cationic complexes. RSC Advances, 2014, 4, 53010-53020.	1.7	18
205	Time reconstruction of harmonic emission in molecules near the ionization threshold. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 241001.	0.6	1
206	Clocking ultrafast wave packet dynamics in H ₂ by using UV pump - UV probe schemes. Journal of Physics: Conference Series, 2014, 488, 022027.	0.3	0
207	Reconstruction and control of a time-dependent two-electron wave packet. Nature, 2014, 516, 374-378.	13.7	245
208	Disclosing intrinsic molecular dynamics on the 1-fs scale through extreme-ultraviolet pump-probe measurements. Physical Review A, 2014, 89, .	1.0	51
209	Circular dichroism in molecular-frame photoelectron angular distributions in the dissociative photoionization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2<mml:msub><mml:mtext>D</mml:mtext><mml:mn>2<td>nml:mn><</td><td>/m&nl:msub> /mml:msub></td></mml:mn></mml:msub></mml:mn></mml:msub></mml:math>	nml:mn><	/m&nl:msub> /mml:msub>
210	Physical Review A, 2014, 90, . Molecular resolvent-operator method: Electronic and nuclear dynamics in strong-field ionization. Physical Review A, 2014, 89, .	1.0	16
211	Multiple ionization and hydrogen loss from neutral and positively-charged coronene. Journal of Chemical Physics, 2014, 140, 204307.	1.2	31
212	Hybrid Gaussianâ€" <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -spline basis for the electronic continuum: Photoionization of atomic hydrogen. Physical Review A, 2014, 90, .	1.0	63
213	Ultrafast nonadiabatic fragmentation dynamics of biomolecules. Journal of Physics: Conference Series, 2014, 488, 012037.	0.3	7
214	XUV Lasers for Ultrafast Electronic Control in H2. Springer Series in Chemical Physics, 2014, , 25-48.	0.2	4
215	Time-dependent density functional theory molecular dynamics simulation of doubly charged uracil in gas phase. Open Physics, 2014, 12, .	0.8	4
216	Charge transfer-assisted self-limited decyanation reaction of TCNQ-type electron acceptors on Cu(100). Chemical Communications, 2014, 50, 833-835.	2.2	16

#	Article	IF	CITATIONS
217	Attosecond vacuum UV coherent control of molecular dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 912-917.	3.3	116
218	Charge-Transfer-Induced Isomerization of DCNQI on Cu(100). Journal of Physical Chemistry C, 2014, 118, 27388-27392.	1.5	3
219	Controlling the spatial arrangement of organic magnetic anions adsorbed on epitaxial graphene on Ru(0001). Nanoscale, 2014, 6, 15271-15279.	2.8	19
220	Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science, 2014, 346, 336-339.	6.0	615
221	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal">C<mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>6</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:mrow </mml:msup><mml:mo>â^²C<mml:mn>60</mml:mn>collisions.</mml:mo></mml:mrow></mml:mi 	o> <td>mrow><mrnl:< td=""></mrnl:<></td>	mrow> <mrnl:< td=""></mrnl:<>
222	Physical Review A. 2014, 90 High harmonic spectroscopy of electron localization in the hydrogen molecular ion. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 204015.	0.6	23
223	Probing the Site-Dependent Kondo Response of Nanostructured Graphene with Organic Molecules. Nano Letters, 2014, 14, 4560-4567.	4.5	24
224	Stability of the glycine cation in the gas phase after interaction with multiply charged ions. European Physical Journal D, 2014, 68, 1.	0.6	16
225	Unraveling the Factors That Control Soft Landing of Small Silyl Ions on Fluorinated Self-Assembled Monolayers. Journal of Physical Chemistry C, 2014, 118, 10159-10169.	1.5	5
226	Dissociative and non-dissociative photoionization of molecular fluorine from inner and valence shells. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195, 320-326.	0.8	6
227	Chain-Length and Temperature Dependence of Self-Assembled Monolayers of Alkylthiolates on Au(111) and Ag(111) Surfaces. Journal of Physical Chemistry A, 2014, 118, 4138-4146.	1.1	23
228	Non-statistical fragmentation of PAHs and fullerenes in collisions with atoms. International Journal of Mass Spectrometry, 2014, 365-366, 260-265.	0.7	34
229	Fragmentation Dynamics of Doubly Charged Methionine in the Gas Phase. Journal of Physical Chemistry A, 2014, 118, 1374-1383.	1.1	22
230	Special issue on ultrafast electron and molecular dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 120201.	0.6	2
231	Electron streaking and dissociation in laser-assisted photoionization of molecular hydrogen. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 124013. Formation dynamics of fullerene dimers <mml:math< td=""><td>0.6</td><td>8</td></mml:math<>	0.6	8
232	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup><mml:mi>C</mml:mi><mml:mrow><mml xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi>C</mml:mi><mml:mrow><mml and<mml:math<="" td=""><td>l:mn>119<</td><td><!--</td--></td></mml></mml:mrow></mml:msubsup></mml></mml:mrow></mml:msubsup>	l:mn>119<	</td
233	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup><mml:mi>C</mml:mi><mml:mrow><mml .="" 102019.<="" 2014,="" 488,="" 89,="" a,="" acids="" amino="" by="" charged="" collisions="" conference="" fragmentation="" highly="" induced="" ions.="" journal="" low-energy="" of="" physical="" physics:="" review="" series,="" td="" with=""><td>l:mn>120<</td><td> <!--</td--></td></mml></mml:mrow></mml:msubsup>	l:mn>120<	</td
234	Continuum-continuum transitions between resonant states using the RABITT technique. Journal of Physics: Conference Series, 2014, 488, 022014.	0.3	0

#	Article	IF	Citations
235	Wave packet dynamics in molecular excited electronic states. Journal of Physics: Conference Series, 2014, 488, 012017.	0.3	2
236	Correlated electron and nuclear dynamics in strong field photoionization of H ⁺ ₂ . Journal of Physics: Conference Series, 2014, 488, 032017.	0.3	0
237	Bond formation in C+59 – C60 collisions. Journal of Physics: Conference Series, 2014, 488, 012028.	0.3	0
238	Influence of the description of the initial bound wavefunction in the single ionization reaction of H2O molecules. Journal of Physics: Conference Series, 2014, 488, 102028.	0.3	0
239	Vibrationally resolved molecular frame photoelectron angular distributions of diatomic and polyatomic molecules. Journal of Physics: Conference Series, 2014, 488, 022022.	0.3	0
240	The role of intramolecular scattering in K-shell photoionization. Journal of Physics: Conference Series, 2014, 488, 022023.	0.3	0
241	Fragmentation dynamics of excited ionized polycyclic aromatic hydrocarbons. Journal of Physics: Conference Series, 2014, 488, 102027.	0.3	0
242	Attosecond Transient Absorption Spectroscopy of doubly-excited states in helium. Journal of Physics: Conference Series, 2014, 488, 032030.	0.3	3
243	Exohedral interaction in cationic lithium metallofullerenes. Highlights in Theoretical Chemistry, 2014, , 89-96.	0.0	0
244	Exohedral interaction in cationic lithium metallofullerenes. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	7
245	Environment-driven reactivity of H2 on PdRu surface alloys. Physical Chemistry Chemical Physics, 2013, 15, 14936.	1.3	15
246	Ultrafast coherent control of giant oscillating molecular dipoles in the presence of static electric fields. Journal of Chemical Physics, 2013, 139, 084306.	1.2	14
247	Onset of Chiral Adenine Surface Growth. ChemPhysChem, 2013, 14, 3294-3302.	1.0	2
248	Ultrafast Damage Following Radiationâ€Induced Oxidation of Uracil in Aqueous Solution. Angewandte Chemie - International Edition, 2013, 52, 3160-3163.	7.2	34
249	Dynamics of Glycine Dications in the Gas Phase: Ultrafast Intramolecular Hydrogen Migration versus Coulomb Repulsion. Journal of Physical Chemistry Letters, 2013, 4, 3903-3909.	2.1	74
250	Lattice-matched versus lattice-mismatched models to describe epitaxial monolayer graphene on Ru(0001). Physical Review B, 2013, 88, .	1.1	35
251	Density functional theory study of the structure and vibrational modes of acrylonitrile adsorbed on Cu(100). Physical Chemistry Chemical Physics, 2013, 15, 1288-1295.	1.3	11
252	Vibrationally resolved K-shell photoionization cross sections of methane. Open Physics, 2013, 11, .	0.8	2

#	Article	IF	Citations
253	Electron double differential cross sections for ionization of O ₂ under fast C ⁶⁺ ion impact and interference oscillation. Physica Scripta, 2013, T156, 014038.	1.2	O
254	Twoâ€Pulse Control of Largeâ€Amplitude Vibrations in H ₂ ⁺ . ChemPhysChem, 2013, 14, 1405-1412.	1.0	10
255	Fully Differential Single-Photon Double Ionization of Neon and Argon. Physical Review Letters, 2013, 110, 173001.	2.9	17
256	Correlated Electron and Nuclear Dynamics in Strong Field Photoionization of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi mathvariant="bold">H</mml:mi><mml:mn>2</mml:mn><mml:mo mathvariant="bold">+</mml:mo></mml:msubsup></mml:math> . Physical Review Letters, 2013, 110, 113001.	2.9	69
257	Elastic Response of Graphene Nanodomes. ACS Nano, 2013, 7, 2927-2934.	7.3	35
258	Time-dependent formalism of double ionization of multielectron atomic targets. Chemical Physics, 2013, 414, 112-120.	0.9	11
259	Autoionization of Molecular Hydrogen: Where do the Fano Lineshapes Go?. ChemPhysChem, 2013, 14, 1456-1463.	1.0	21
260	Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nature Physics, 2013, 9, 368-374.	6.5	158
261	Ultrashort pulses and free-electron lasers applications. Open Physics, 2013, 11, .	0.8	0
262	Ordered arrays of metal–organic magnets at surfaces. Journal of Physics Condensed Matter, 2013, 25, 484007.	0.7	16
263	Intramolecular photoelectron diffraction in the gas phase. Journal of Chemical Physics, 2013, 139, 124306.	1.2	39
264	The soft-photon approximation in infrared-laser-assisted atomic ionization by extreme-ultraviolet attosecond-pulse trains. New Journal of Physics, 2013, 15, 113009.	1.2	21
265	lons colliding with clusters of fullerenesâ€"Decay pathways and covalent bond formations. Journal of Chemical Physics, 2013, 139, 034309.	1.2	21
266	Relationship between polarization-averaged molecular-frame photoelectron angular distributions and geometry. Physical Review A, 2013, 88, .	1.0	22
267	Effects of molecular potential and geometry on atomic core-level photoemission over an extended energy range: The case study of the CO molecule. Physical Review A, 2013, 88, .	1.0	36
268	Electron Localization Involving Doubly Excited States in Broadband Extreme Ultraviolet Ionization of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:miline"><mml:msub><mml:miline"><mml:msub></mml:msub></mml:miline"></mml:msub></mml:miline"></mml:msub></mml:math> . Physical Review	2.9	33
269	display=2011e 110n0110000> <mmi:mi mathvariant="bold">C<mml:mn>118</mml:mn>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi mathvariant="bold">C<mml:mn>119</mml:mn></mml:mi </mml:msub>inside Clusters</mml:math </mmi:mi 	2.9	61
270	Using Molecular Reflectivity to Explore Reaction Dynamics at Metal Surfaces. Springer Series in Surface Sciences, 2013, , 75-100.	0.3	2

#	Article	IF	CITATIONS
271	Vibrationally resolved photoelectron angular distributions from randomly oriented and fixed-in-space N ₂ and CO molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 194008.	0.6	15
272	Investigation of the interference effect in the case of low energy electron emission from O2in collisions with fast bare C-ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 215207.	0.6	8
273	Double-slit experiment with a polyatomic molecule: vibrationally resolved C 1s photoelectron spectra of acetylene. New Journal of Physics, 2012, 14, 033012.	1.2	40
274	Helium, neon and argon diffraction from Ru(0001). Journal of Physics Condensed Matter, 2012, 24, 354002.	0.7	16
275	Autoionizing decay of H <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> doubly excited states by using xuv-pumpâ€"infrared-probe schemes with trains of attosecond pulses. Physical Review A. 2012, 85	1.0	20
276	Impact ionization of molecular oxygen by 3.5-MeV/u bare carbon ions. Physical Review A, 2012, 85, .	1.0	22
277	Intramolecular electron diffraction in vibrationally resolved <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math> -shell photoionization of methane. Physical Review A. 2012. 85	1.0	37
278	Electron localization in epitaxial graphene on Ru(0001) determined by moir \tilde{A} © corrugation. Physical Review B, 2012, 85, .	1.1	34
279	Observation of Interference between Two Distinct Autoionizing States in Dissociative Photoionization of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold">H</mml:mi><mml:mn></mml:mn></mml:msub></mml:math> . Physical Review	2.9	12
280	Laser-controlled vibrational heating and cooling of oriented H+2molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 105602.	0.6	15
281	Clocking Ultrafast Wave Packet Dynamics in Molecules through UV-Induced Symmetry Breaking. Physical Review Letters, 2012, 108, 063009.	2.9	34
282	Near-threshold H ₂ electron and nuclear dynamics induced by attosecond pulse trains and probed by IR pulses. Journal of Physics: Conference Series, 2012, 388, 032064.	0.3	0
283	High-energy non-Franck-Condon vibrational excitation of CH4by intramolecular photoelectron diffraction. Journal of Physics: Conference Series, 2012, 388, 022058.	0.3	0
284	Attosecond Control in Photoionization of D ₂ . Journal of Physics: Conference Series, 2012, 388, 022028.	0.3	0
285	Partial localization and symmetries in coherent electron emission from molecules. Journal of Physics: Conference Series, 2012, 388, 012037.	0.3	1
286	Tracing vibrational wave packets in excited electronic states of H2with xuv-pump/xuv-probe schemes. Journal of Physics: Conference Series, 2012, 388, 022060.	0.3	0
287	Reactive scattering of H \cdot sub \cdot 2 \cdot /sub \cdot (Î \cdot /2 â \cdot % \cdot 40, \cdot 1 \cdot 1 \cdot 3 \cdot 6% \cdot 80) from metal surfaces under fast-grazing incidence conditions. Journal of Physics: Conference Series, 2012, 388, 132005.	0.3	0
288	Charge transfer and fragmentation in C60+ C6+collisions. Journal of Physics: Conference Series, 2012, 388, 102012.	0.3	0

#	Article	IF	Citations
289	Time dependent investigations of double photoionization applied to atomic beryllium. Journal of Physics: Conference Series, 2012, 388, 022092.	0.3	0
290	Single photon double core-hole photoionization of atomic beryllium. Journal of Physics: Conference Series, 2012, 388, 022012.	0.3	0
291	Circular Dichrosim in Photoionization of H ₂ and D ₂ . Journal of Physics: Conference Series, 2012, 388, 022019.	0.3	0
292	Experimental and theoretical asymmetry parameters for photoionization of H2showing interference from the Q1and Q2doubly excited states. Journal of Physics: Conference Series, 2012, 388, 022031.	0.3	0
293	Theoretical study of the vibrationally resolved photoionization cross section for the valence shells of N ₂ and CO. Journal of Physics: Conference Series, 2012, 388, 022033.	0.3	0
294	Interference effects in single ionization spectra of N2and O2molecular targets by proton impact. Journal of Physics: Conference Series, 2012, 388, 102039.	0.3	0
295	Quenching H2autoionization interferences with ultrashort xuv laser pulses. Journal of Physics: Conference Series, 2012, 388, 022062.	0.3	0
296	H ₂ Diffraction from a Strained Pseudomorphic Monolayer of Cu Deposited on Ru(0001). Journal of Physical Chemistry C, 2012, 116, 13671-13678.	1.5	15
297	Commensurate Solid–Solid Phase Transitions in Self-Assembled Monolayers of Alkylthiolates Lying on Metal Surfaces. Journal of the American Chemical Society, 2012, 134, 13224-13227.	6.6	11
298	Reproducibility of Observables and Coherent Control in Molecular Photoionization: From Continuous Wave to Ultrashort Pulsed Radiation. Journal of Physical Chemistry A, 2012, 116, 2704-2712.	1.1	24
299	Vibrational branching ratios in the photoelectron spectra of N2 and CO: interference and diffraction effects. Physical Chemistry Chemical Physics, 2012, 14, 10853.	1.3	27
300	Theoretical study of interference effects in single electron ionization of N2molecules by proton impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 025201.	0.6	21
301	Ultrafast non-adiabatic fragmentation dynamics of doubly charged uracil in gas and liquid phase. Journal of Physics: Conference Series, 2012, 388, 102055.	0.3	1
302	Pump–Probe Scheme To Study the Autoionization Decay of Optically-Forbidden H ₂ Doubly Excited States. Journal of Physical Chemistry A, 2012, 116, 11304-11310.	1.1	4
303	Structures, Energetics, and Dynamics of Helium Adsorbed on Isolated Fullerene Ions. Physical Review Letters, 2012, 108, 076101.	2.9	68
304	A Multicoincidence Study of Fragmentation Dynamics in Collision of γâ€Aminobutyric Acid with Lowâ€Energy Ions. Chemistry - A European Journal, 2012, 18, 9321-9332.	1.7	44
305	A non-adiabatic wavepacket dynamical study of the low energy charge transfer process in the S3++H collision. Chemical Physics, 2012, 400, 165-170.	0.9	14
306	Attosecond Time-Resolved Electron Dynamics in the Hydrogen Molecule. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 520-530.	1.9	19

#	Article	IF	CITATIONS
307	Probing Electron Dynamics in Simple Molecules with Attosecond Pulses. Springer Series in Chemical Physics, 2012, , 1-28.	0.2	2
308	Attosecond Control in Photoionization of Hydrogen Molecules. Physical Review Letters, 2011, 107, 043002.	2.9	134
309	Theoretical study of the structure of self-assembled monolayers of short alkylthiolates on Au(111) and Ag(111): the role of induced substrate reconstruction and chainâ \in "chain interactions. Physical Chemistry Chemical Physics, 2011, 13, 9353.	1.3	24
310	Formation of Self-Assembled Chains of Tetrathiafulvalene on a Cu(100) Surface. Journal of Physical Chemistry A, 2011, 115, 13080-13087.	1.1	6
311	DoubleK-shell photoionization of atomic beryllium. Physical Review A, 2011, 84, .	1.0	13
312	Interference and non-Franck-Condon effects in ionization of H ₂ molecules by photon impact. Journal of Physics: Conference Series, 2011, 288, 012025.	0.3	0
313	Coherence and partial localization in electron emission from asymmetric diatomic molecules. Journal of Physics: Conference Series, 2011, 288, 012026.	0.3	5
314	Surface assembly of porphyrin nanorods with one-dimensional zinc–oxygen spinal cords. CrystEngComm, 2011, 13, 5591.	1.3	8
315	A density functional theory study of the manganese-phthalocyanine. Theoretical Chemistry Accounts, 2011, 128, 497-503.	0.5	30
316	Probing vibrational wave packets in molecular excited states. Theoretical Chemistry Accounts, 2011, 128, 735-742.	0.5	5
317	Theoretical study of the stability of small triply charged carbon clusters Cn3+ (n=3–12). International Journal of Mass Spectrometry, 2011, 299, 20-26.	0.7	2
318	Ultrafast Nonadiabatic Fragmentation Dynamics of Doubly Charged Uracil in a Gas Phase. Physical Review Letters, 2011, 107, 023202.	2.9	63
319	Role of Dispersion Forces in the Structure of Graphene Monolayers on Ru Surfaces. Physical Review Letters, 2011, 106, 186102.	2.9	129
320	Direct observation of Young's double-slit interferences in vibrationally resolved photoionization of diatomic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7302-7306.	3.3	108
321	Complete Feshbach-type calculations of energy positions and widths of autoionizing states in Li-like atoms. Physical Review A, 2010, 82, .	1.0	8
322	Grazing incidence scattering of vibrationally excited H2 molecules from metal surfaces. Surface Science, 2010, 604, 2031-2035.	0.8	8
323	Molecular frame photoelectron angular distributions for H ₂ ionization by single and trains of attosecond XUV laser pulses. International Journal of Quantum Chemistry, 2010, 110, 2462-2471.	1.0	4
324	Electron localization following attosecond molecular photoionization. Nature, 2010, 465, 763-766.	13.7	630

#	Article	IF	Citations
325	Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nature Chemistry, 2010, 2, 374-379.	6.6	273
326	Reactive scattering of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><metal .<="" 2010,="" 82,="" a,="" conditions.="" fast-grazing-incidence="" physical="" review="" surfaces="" td="" under=""><td>. 1.0 - ₹/mml:ma</td><td>atn>from</td></metal></mml:math>	. 1.0 - ₹/mml:ma	atn>from
327	Tracing direct and sequential two-photon double ionization of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">D</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow> femtosecond extreme-ultraviolet laser pulses. Physical Review A. 2010. 81.</mml:math>	• 1.0 • • /mml:ma	ath>in
328	Circular Dichroism in Photoionization of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub> . Physical Review Letters, 2010, 104, 233003.	2.9	43
329	Nonmonotonic dissociative adsorption of vibrationally excited <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn></mml:msub><td>1,1 ml:mrow></td><td><u>12</u> √/mml:mat</td></mml:mrow></mml:math>	1,1 ml:mrow>	<u>12</u> √/mml:mat
330	Magic and hot giant fullerenes formed inside ion irradiated weakly bound C60 clusters. Journal of Chemical Physics, 2010, 133, 104301.	1.2	28
331	The role of autoionizing states in two-photon dissociative ionization of H2by xuv ultrashort laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 015204.	0.6	12
332	Partial localization in coherent electron emission from asymmetric diatomic molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 135203.	0.6	12
333	Growth and Structure of Self-assembled Monolayers of a TTF Derivative on Au(111). Journal of Physical Chemistry C, 2010, 114, 6503-6510.	1.5	16
334	Theoretical investigation of the ultrafast dissociation of ionised biomolecules immersed in water: Direct and indirect effects. Mutation Research - Reviews in Mutation Research, 2010, 704, 45-53.	2.4	31
335	Investigating two-photon double ionization of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">D</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><xuv-pumpâ€"xuv-probe .<="" 2010,="" 81,="" a,="" experiments.="" physical="" review="" td=""><td>• 1.0 • <td>ath>by</td></td></xuv-pumpâ€"xuv-probe></mml:math>	• 1.0 • <td>ath>by</td>	ath>by
336	Study of the interaction between short alkanethiols from ab initio calculations. Physical Chemistry Chemical Physics, 2010, 12, 7555.	1.3	17
337	Experimental and theoretical study of rotationally inelastic diffraction of D2 from NiAl(110). Physical Chemistry Chemical Physics, 2010, 12, 14501.	1.3	11
338	Molecular Effects in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Scattering from Metal Surfaces at Grazing Incidence. Physical Review Letters, 2009, 103, 013201.	2.9	21
339	Double-slit, confinement, and non-Franck-Condon effects in photoionization of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> at high photon energy. Physical Review A. 2009. 79	1.0	30
340	Density functional theory study of multiply ionized weakly bound fullerene dimers. Journal of Chemical Physics, 2009, 130, 224302.	1.2	14
341	Electron and ion angular distributions in resonant dissociative photoionization of H ₂ and D ₂ using linearly polarized light. New Journal of Physics, 2009, 11, 043020.	1.2	29
342	Probing H2 quantum autoionization dynamics with xuv atto and femtosecond laser pulses. Chemical Physics, 2009, 366, 58-63.	0.9	7

#	Article	IF	CITATIONS
343	Ionization and fragmentation of water clusters by fast highly charged ions. Journal of Physics B: Atomic. Molecular and Optical Physics, 2009, 42, 075101 Two-center effects in one-photon single ionization of mml:math	0.6	22
344	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msubsup><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn><mml:mrow>< width="0.3em" /><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:mrow> , <mml:math< th=""><th>mml:msp</th><th>ace 29</th></mml:math<>	mml:msp	ace 29
345	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" mml:mrow> <mml:msub><mml:mt 075203.<="" 2009,="" 42,="" and="" atomic,="" b:="" coherence="" collisionally="" diatomic="" electron="" emission="" from="" heteronuclear="" in="" induced="" journal="" molecular="" molecules.="" of="" optical="" physics="" physics,="" td=""><td>0.6</td><td>12</td></mml:mt></mml:msub>	0.6	12
346	Stability of multiply charged fullerene anions and cations. Physical Review A, 2009, 80, .	1.0	11
347	Asymmetric electron angular distributions in resonant dissociative photoionization ofH2with ultrashort xuv pulses. Physical Review A, 2009, 80, .	1.0	25
348	Two-photon double ionization of H ₂ at 30 eV using exterior complex scaling. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 134013.	0.6	36
349	Theoretical study of hydrogen dissociative adsorption on strained pseudomorphic monolayers of Cu and Pd deposited onto a Ru(0001) substrate. Physical Chemistry Chemical Physics, 2009, 11, 7303.	1.3	27
350	Two photon double ionization of H2using exterior complex scaling. Journal of Physics: Conference Series, 2009, 194, 022062.	0.3	0
351	Molecular effects in grazing incidence collisions of H ₂ with metal surfaces. Journal of Physics: Conference Series, 2009, 194, 012058.	0.3	O
352	Absolute charge transfer and fragmentation cross sections in He2++C60collisions. Journal of Physics: Conference Series, 2009, 194, 012047.	0.3	2
353	Explanation of observed interference patterns in the differential cross section for double photoionization of H2. Journal of Physics: Conference Series, 2009, 194, 022066.	0.3	O
354	Classical two-slit interference effects in double photoionization of molecular hydrogen at high energies. Journal of Physics: Conference Series, 2009, 194, 022068.	0.3	0
355	Two-photon dissociative ionization of H2by ultrashort xuv laser pulses. Journal of Physics: Conference Series, 2009, 194, 032054.	0.3	O
356	H2dissociative adsorption on pseudomorphic monolayers grown on metal surfaces. Journal of Physics: Conference Series, 2009, 194, 132026.	0.3	0
357	Interference, confinement and non Franck-Condon effects in photoionization of H ₂ molecules at high photon energy. Journal of Physics: Conference Series, 2009, 194, 032039.	0.3	O
358	Probing H2autoionizing states with femto- and attosecond laser pulses. Journal of Physics: Conference Series, 2009, 194, 012013.	0.3	0
359	Using ultrashort xuv laser pulses to investigate symmetry breaking in one-photon single-ionization of H2. Journal of Physics: Conference Series, 2009, 194, 032041.	0.3	O
360	Stable Nonâ€IPR C ₆₀ and C ₇₀ Fullerenes Containing a Uniform Distribution of Pyrenes and Adjacent Pentagons. ChemPhysChem, 2008, 9, 861-866.	1.0	39

#	Article	IF	Citations
361	Understanding the Supramolecular Selfâ€Assembly of the Fullerene Derivative PCBM on Gold Surfaces. ChemPhysChem, 2008, 9, 1030-1035.	1.0	21
362	Classical Two-Slit Interference Effects in Double Photoionization of Molecular Hydrogen at High Energies. Physical Review Letters, 2008, 101, 183002.	2.9	54
363	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math></pre>	n nılı mrow:	> ≰#nml:mat
364	Absolute Charge Transfer and Fragmentation Cross Sections inHe2+â°'C60Collisions. Physical Review Letters, 2008, 100, 183401.	2.9	31
365	Theoretical study of the stability of multiply charged C70 fullerenes. Journal of Chemical Physics, 2007, 127, 104308.	1.2	16
366	Probing reaction dynamics at metal surfaces with H ₂ diffraction. Journal of Physics Condensed Matter, 2007, 19, 305003.	0.7	11
367	Photoionization of the HeH+molecular ion. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 2471-2480.	0.6	6
368	Role of Nuclear Motion in Double Ionization of Molecular Hydrogen by a Single Photon. Physical Review Letters, 2007, 98, 073001.	2.9	36
369	Electron angular distribution in resonance-enhanced two-photon ionization ofH2+by ultrashort laser pulses. Physical Review A, 2007, 75, .	1.0	12
370	Dissociative and nondissociative photoionization of H2 from the E, Fî \pm g+1 excited state. Physical Review A, 2007, 75, .	1.0	1
371	Interferences from Fast Electron Emission in Molecular Photoionization. Physical Review Letters, 2007, 98, 043005.	2.9	102
372	First- and second-electron affinities of C60 and C70 isomers. Physical Review A, 2007, 76, .	1.0	30
373	Single Photon-Induced Symmetry Breaking of H2 Dissociation. Science, 2007, 315, 629-633.	6.0	185
374	Structural Patterns in Fullerenes Showing Adjacent Pentagons: C20 to C72. Journal of Nanoscience and Nanotechnology, 2007, 7, 1329-1338.	0.9	26
375	Electron angular distribution in dissociative photoionization of fixed in space D2molecules induced by circularly polarized light. Journal of Physics: Conference Series, 2007, 88, 012009.	0.3	2
376	Two-photon double ionization of helium above and below the threshold for sequential ionization. Physical Review A, 2007, 76, .	1.0	105
377	Excitation and ionization of molecular hydrogen by ultrashort vuv laser pulses. Physical Review A, 2007, 75, .	1.0	44
378	Molecular ionization and dissociation using synchrotron radiation and ultrashort laser pulses. Journal of Physics: Conference Series, 2007, 88, 012001.	0.3	2

#	Article	IF	CITATIONS
379	Crossover Siteâ€Selectivity in the Adsorption of the Fullerene Derivative PCBM on Au(111). Angewandte Chemie - International Edition, 2007, 46, 7874-7877.	7.2	70
380	Ab initio time-dependent method to study the hydrogen molecule exposed to intense ultrashort laser pulses. Journal of Electron Spectroscopy and Related Phenomena, 2007, 161, 182-187.	0.8	23
381	First principles study of double photoionization of using exterior complex scaling. Journal of Electron Spectroscopy and Related Phenomena, 2007, 161, 85-89.	0.8	5
382	Fragmentation induced by charge exchange in collisions of charged alkaline clusters with alkali atoms. European Physical Journal D, 2007, 44, 525-532.	0.6	8
383	Double photoionization of aligned molecular hydrogen. Physical Review A, 2006, 74, .	1.0	85
384	Kinematically Complete Study of Dissociative Ionization of D2 by Ion Impact. Physical Review Letters, 2006, 96, 173201.	2.9	19
385	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.4	6
386	Ionization potentials, dissociation energies and statistical fragmentation of neutral and positively charged small carbon clusters. Brazilian Journal of Physics, 2006, 36, 529-533.	0.7	20
387	First principles calculations of the double photoionization of atoms and molecules using B-splines and Exterior Complex Scaling. AIP Conference Proceedings, 2006, , .	0.3	1
388	ACCURATE CALCULATIONS OF TRIPLE DIFFERENTIAL CROSS SECTIONS FOR DOUBLE PHOTOIONIZATION OF THE HYDROGEN MOLECULE. , 2006, , .		0
389	Ionization potentials and dissociation energies of neutral, singly and doubly charged Cn fullerenes from n=20 to 70. International Journal of Mass Spectrometry, 2006, 252, 133-141.	0.7	29
390	Fragmentation of small neutral carbon clusters. International Journal of Mass Spectrometry, 2006, 252, 126-132.	0.7	21
391	Interferences in the photoelectron spectrum of H+2 molecules at high energy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 350, 371-374.	0.9	32
392	Computational Studies on the Cyclization of Polycyclic Aromatic Hydrocarbons in the Synthesis of Curved Aromatic Derivatives. ChemPhysChem, 2006, 7, 475-481.	1.0	3
393	The role of molecular rotation in activated dissociative adsorption on metal surfaces. Journal of Chemical Physics, 2006, 124, 084706.	1.2	16
394	Experimental evidence of dynamic trapping in the scattering of H2 from Pd(110). Journal of Chemical Physics, 2006, 125, 051101.	1.2	16
395	Production of excited atomic hydrogen and deuterium from H2and D2photodissociation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 4871-4882.	0.6	25
396	Enhancement and Control of H2D issociative Ionization by Femtosecond VUV Laser Pulses. Physical Review Letters, 2006, 96, 143001.	2.9	54

#	Article	IF	Citations
397	Validity of the isolated resonance picture for H2 autoionizing states. Physical Review A, 2006, 73, .	1.0	9
398	Quantum dynamical study of the H2 and D2 dissociative adsorption and diffraction from the NiAl (110) alloy surface. Physical Review B, 2006, 73, .	1.1	24
399	Step-ladder Rabi oscillations in molecules exposed to intense ultrashort vuv pulses. Physical Review A, 2006, 74, .	1.0	38
400	Time-dependent theoretical description of molecular autoionization produced by femtosecond xuv laser pulses. Physical Review A, 2006, 73, .	1.0	93
401	FRAGMENTATION OF COLLISIONALLY EXCITED FULLERENES., 2006,,.		0
402	DYNAMICS OF H ₂ CHEMISORPTION ON METAL SURFACES., 2006,,.		0
403	Resonant effects in the Coulomb explosion of H+2by ultrashort laser pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, L99-L105.	0.6	20
404	Fullerene C50: Sphericity takes over, not strain. Chemical Physics Letters, 2005, 407, 153-158.	1.2	56
405	Size dependence of ionization potentials and dissociation energies for neutral and singly-charged Cn fullerenes (n=40–70). Chemical Physics Letters, 2005, 416, 14-17.	1.2	22
406	Coulomb Stability Limit of Highly ChargedC60q+Fullerenes. Physical Review Letters, 2005, 95, 013401.	2.9	55
407	Structure and Electronic Properties of Fullerenes C52q+: Is C522+an Exception to the Pentagon Adjacency Penalty Rule?. ChemPhysChem, 2005, 6, 92-100.	1.0	43
408	Statistical fragmentation of small neutral carbon clusters. Physical Review A, 2005, 71, .	1.0	34
409	Quantum and classical dynamics of H2 scattering from $Pd(111)$ at off-normal incidence. Physical Review B, 2005, 72, .	1.1	22
410	Above-threshold ionization near the 3p4dFo1 autoionizing state in magnesium. Physical Review A, 2005, 71, .	1.0	3
411	Complete Photo-Induced Breakup of the H2 Molecule as a Probe of Molecular Electron Correlation. Science, 2005, 310, 1787-1789.	6.0	115
412	Structure and electronic properties of highly charged C60 and C58 fullerenes. Journal of Chemical Physics, 2005, 123, 184306.	1.2	41
413	Adsorption and scattering of H2 and D2 by NiAl(110). Journal of Chemical Physics, 2005, 123, 074705.	1.2	32
414	A classical dynamics method for H2 diffraction from metal surfaces. Journal of Chemical Physics, 2005, 122, 154706.	1.2	28

#	Article	IF	CITATIONS
415	Structure and reactivity of C54q+(q= 0, 1, 2 and 4) fullerenes. Physical Chemistry Chemical Physics, 2005, 7, 3756.	1.3	4
416	Two-photon ionization of H2+by short laser pulses. Physical Review A, 2005, 71, .	1.0	29
417	On the existence and lifetimes of Cu2+ complexes with water, ammonia, and hydrogen cyanide. Journal of Chemical Physics, 2005, 123, 014315.	1.2	14
418	In-Plane and Out-of-Plane Diffraction of H2 from Metal Surfaces. Physical Review Letters, 2004, 93, 246104.	2.9	72
419	Symmetrized complex amplitudes for He double photoionization from the time-dependent close-coupling and exterior complex scaling methods. Physical Review A, 2004, 70, .	1.0	21
420	Nonperturbative theory of double photoionization of the hydrogen molecule. Physical Review A, 2004, 70, .	1.0	44
421	Density functional theory study of H and H2 interacting with NiAl(110). Journal of Chemical Physics, 2004, $121,751-760$.	1.2	44
422	Stable Doubly Charged Positive Molecular Ions Formed by Direct Attachment of Alpha Particles to HCN and HNC. Physical Review Letters, 2004, 92, 133001.	2.9	9
423	Theoretical treatment of double photoionization of helium using aB-spline implementation of exterior complex scaling. Physical Review A, 2004, 69, .	1.0	76
424	Theoretical analysis of the relation between H2 dissociation and reflection on Pd surfaces. Journal of Chemical Physics, 2004, 120, 321-328.	1.2	23
425	Autoionization electrons following double excitation of D2 in 2.4 ke Veâ^'+D2 collisions: Experimental and theoretical evidence. Physical Review A, 2004, 70, .	1.0	17
426	Implementation of exterior complex scaling in B-splines to solve atomic and molecular collision problems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 917-936.	0.6	75
427	Interference effects in H2photoionization at high energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 3035-3042.	0.6	60
428	Pronounced out-of-plane diffraction of H2 molecules from a Pd(111) surface. Chemical Physics Letters, 2004, 390, 250-255.	1.2	55
429	Fragmentation of Highly Excited Small Neutral Carbon Clusters. Physical Review Letters, 2004, 93, 063401.	2.9	45
430	Theoretical and Experimental Study of the Scattering of H2 from Pd(111). Physica Scripta, 2004, 110, 394.	1.2	5
431	Charge Transfer and Evaporation in Low Energy Collisions of Metal Clusters and Fullerenes with Atomic Targets. Physica Scripta, 2004, 110, 308.	1.2	2
432	Fragmentation of neutral Cn clusters (n?9): experimental and theoretical investigations. European Physical Journal D, 2003, 24, 149-152.	0.6	8

#	Article	IF	Citations
433	Three-photon above-threshold ionization of magnesium. Physical Review A, 2003, 68, .	1.0	10
434	Angular distribution of H[sub 2] molecules scattered from the Pd(111) surface. Journal of Chemical Physics, 2003, 118, 2886.	1.2	30
435	Theoretical study of ionization potentials and dissociation energies of Cnq+ fullerenes (n=50–60,) Tj ETQq1	1 0.784314 1.2	1 rgBT /Overlo
436	Charge-transfer-induced evaporation in collisions of Li312+clusters with Cs atoms. Physical Review A, 2003, 68, .	1.0	12
437	Charge Transfer and Dissociation in Collisions of Metal Clusters with Atoms. Physical Review Letters, 2002, 89, 183402.	2.9	27
438	Charge dependence of electron capture and excitation cross sections in collisions of protons with closed-shellNa20+qq+clusters. Physical Review A, 2002, 65, .	1.0	4
439	Time-dependent close-coupling calculations of double ionization of helium by protons and antiprotons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 2555-2566.	0.6	15
440	Structure, Dissociation Energies, and Harmonic Frequencies of Small Doubly Charged Carbon Clusters Cn2+(n= 3â^9)â€. Journal of Physical Chemistry A, 2002, 106, 10782-10789.	1.1	31
441	Two-photon above-threshold ionization of magnesium. Physical Review A, 2002, 65, .	1.0	11
442	Molecular view of charge exchange in ion-C60collisions. International Journal of Quantum Chemistry, 2002, 86, 106-113.	1.0	11
443	In search of new resonance structures in dissociative photoionization of H2. International Journal of Quantum Chemistry, 2002, 86, 145-150.	1.0	3
444	Fast and Slow Collisions of Ions, Atoms and Molecules. , 2002, , 1025-1042.		1
445	Applications of B-splines in atomic and molecular physics. Reports on Progress in Physics, 2001, 64, 1815-1943.	8.1	608
446	Autoionizing \hat{l} £u+and \hat{l} ûustates of H2above the third and fourth ionization thresholds. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 4141-4153.	0.6	25
447	Fragmentation in collisions of Na9+clusters with Cs atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 3331-3355.	0.6	22
448	Double ionization of He by antiproton impact using a convergent frozen-correlation approximation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, L403-L409.	0.6	9
449	Charge transfer in collisions of Na9+clusters with Cs atoms: a comparison with experiment. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, L707-L714.	0.6	13
450	The role of dynamic correlation in double ionization of He by high-energy protons and antiprotons. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 4373-4388.	0.6	15

#	Article	IF	Citations
451	Excitation of atomic hydrogen by protons and multicharged ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 501-511.	0.6	20
452	Non-autoionizing doubly excited states of H2: the Sigma-symmetry. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, L181-L187.	0.6	20
453	Multichannel Dissociation in Resonant Photoionization ofH2. Physical Review Letters, 1999, 82, 3775-3778.	2.9	50
454	Doubly excited autoionizing states of H2 above the second ionization threshold: the Q2 resonance series. Journal of Chemical Physics, 1999, 110, 6702-6713.	1.2	57
455	Dissociative photoionization ofH2andD2by (30–37)-eV photons via1Îustates. Physical Review A, 1999, 60, 2200-2206.	1.0	21
456	Cluster-size dependence of electron capture and excitation cross sections in proton-Nancollisions. Physical Review A, 1999, 60, 4701-4705.	1.0	9
457	lonization and dissociation using B-splines: photoionization of the hydrogen molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, R197-R231.	0.6	149
458	Asymmetry parameters in two-photon detachment of below 1 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, L801-L806.	0.6	8
459	Resonant dissociative photoionization of H2 and D2. Physical Review A, 1998, 57, 1006-1017.	1.0	56
460	Many-electron dynamics in collisions of slow ions with metal clusters. Physical Review B, 1998, 58, 6752-6755.	1.1	11
461	Electron capture and excitation in proton-Na2Ocollisions at low velocities. Physical Review A, 1998, 58, 367-376.	1.0	33
462	Electron angular distribution in above-threshold two-photon detachment of. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 2417-2424.	0.6	20
463	Origin of Unidentified Structures in Resonant Dissociative Photoionization ofH2. Physical Review Letters, 1997, 79, 1654-1657.	2.9	64
464	Penning detachment ofHâ^'by impact of excited He and Li atoms. Physical Review A, 1997, 55, 1099-1107.	1.0	7
465	Accurate evaluation of multiple-excitation cross sections from one-electron amplitudes. Physical Review A, 1997, 55, 2004-2008.	1.0	23
466	Multichannel Penning detachment of Hâ^'from excited Li and Ca atoms. Physical Review A, 1997, 55, 4209-4214.	1.0	6
467	MartÃn and Salin Reply:. Physical Review Letters, 1997, 78, 750-750.	2.9	2
468	Representation of the electronic continuum of with B-spline basis. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 679-692.	0.6	52

#	Article	IF	CITATIONS
469	The doubly excited states of the H2 molecule. Journal of Chemical Physics, 1997, 106, 7720-7730.	1.2	105
470	Multicenter-Gaussian representation of resonant charge transfer in atom-surface interaction. Surface Science, 1996, 356, 247-256.	0.8	44
471	Projectile charge dependence of helium single excitation at medium and high impact energies. AIP Conference Proceedings, 1996, , .	0.3	O
472	Cross-sections for excitation and ionization of helium and hydrogen by Be4+and B5+ions. Physica Scripta, 1996, T62, 84-87.	1.2	1
473	Electron Correlation in Multiple Excitation of Atoms by High-Energy Ions. Physical Review Letters, 1996, 76, 1437-1440.	2.9	24
474	Electron correlation in ion-atom collisions. Physical Review A, 1996, 54, 3990-4003.	1.0	33
475	Projectile dependence of single-excitation cross sections at intermediate velocities. Physical Review A, 1996, 53, 2869-2872.	1.0	4
476	Angular asymmetry of low-energy electron emission in ion-atom collisions. Physical Review A, 1996, 53, 3243-3246.	1.0	59
477	Electric-field effects on the photodetachment of below the threshold. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 1451-1466.	0.6	8
478	Excitation in Kr34+ + C, Si, Ar, Cu and Zr at intermediate velocities. Nuclear Instruments $\&$ Methods in Physics Research B, 1995, 98, 316-319.	0.6	0
479	Projectile scattering in double excitation of He by proton impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 1985-1994.	0.6	5
480	Inclusive cross sections in collisions of multicharged ions with dressed targets. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 4101-4115.	0.6	10
481	Two-photon detachment with excitation of H Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 2863-2873.	0.6	21
482	Excitation of helium by multicharged ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 671-683.	0.6	19
483	Double excitation of He by multiply charged ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 2159-2171.	0.6	9
484	Double excitation of helium by ion impact. I. Theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 639-652.	0.6	29
485	Double excitation of helium by ion impact. II. Experiment and theory for 2-3 MeV proton impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 653-670.	0.6	28
486	Multichannel close-coupling method with L2integrable bases. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 5741-5760.	0.6	35

#	Article	IF	CITATIONS
487	Projectile-charge sign-inversion effect in double excitation of helium. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, L715-L722.	0.6	8
488	Z scaling properties in multichannel photoionization of He-like ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 4105-4110.	0.6	3
489	New investigation of saturation effect in ion-atom excitation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 111-125.	0.6	20
490	Photoelectron angular distribution asymmetry parameters in Hâ^'photodetachment below the N=3 threshold. Physical Review A, 1994, 50, 1287-1291.	1.0	1
491	Hidden Fano interferences in the resonant photoionization of He-like ions. Physical Review A, 1994, 49, 5116-5119.	1.0	6
492	Predissociative lifetimes of the 2 3Îg state of the H2 molecule. Chemical Physics Letters, 1994, 226, 235-240.	1.2	4
493	Recent questions about the excitation mechanism at intermediate velocity. Nuclear Instruments & Methods in Physics Research B, 1994, 87, 45-50.	0.6	5
494	CompletelyL2integrable method for strong-coupling multichannel photoionization: Photoelectron emission of He between the N=3 and 4 thresholds. Physical Review A, 1993, 48, 331-337.	1.0	40
495	Long range-dipole adapted basis for doubly excited states. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 3283-3295.	0.6	3
496	Electronic density of doubly excited 1,3Po states of the He isoelectronic series. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 3269-3281.	0.6	2
497	Enhancement of resonant structure in the photoelectron spectra of excited He(21Se) above then=2 threshold. Physical Review A, 1993, 47, 1520-1523.	1.0	8
498	Multichannel photoionization of metastable He(23Se): A complete study of the3Poresonances between theN=2 and 3 thresholds. Physical Review A, 1993, 47, 1878-1886.	1.0	11
499	Photodetachment ofHâ^'with excitation to H(N=2). Physical Review A, 1993, 48, 1227-1238.	1.0	29
500	ExtensiveL2calculation of partial photoionization cross sections of He in the 4lnl' resonance region. Physical Review A, 1993, 48, 1243-1251.	1.0	22
501	Detection and analysis of the 1PO and 3PO's hape' resonances of H-using stabilization. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 83-96.	0.6	17
502	Double excitation of helium by 3 MeV proton impact: experiment and theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, L367-L372.	0.6	16
503	Photoionization of He above the N=2 threshold. II. Angular distribution of photoelectrons and asymmetry parameter. Physical Review A, 1992, 45, 4468-4475.	1.0	18
504	Dynamical couplings of the predissociative $n=3$ triplet gerade complex of H2. Chemical Physics Letters, 1992, 200, 587-591.	1.2	6

#	Article	IF	Citations
505	Fully L2 methods for multichannel scattering problems. Partial widths. Journal of Chemical Physics, 1991, 94, 4275-4281.	1.2	19
506	Resonance parameters and properties of helium-like doubly excited states: 2 ≠Z ≠10. Atomic Data and Nuclear Data Tables, 1991, 48, 167-212.	0.9	61
507	Excitation of doubly excited states of helium by ion impact in the Born approximation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 2015-2028.	0.6	19
508	Electron correlation properties of doubly excited states. Berylliumlike vs heliumlike systems. Journal of Chemical Physics, 1991, 94, 5011-5020.	1.2	14
509	Photoionization of He above then=2 threshold. Physical Review A, 1991, 44, 7318-7334.	1.0	52
510	Resonance parameters and properties of beryllium-like doubly excited states: 4 ≠Z ≠10. Atomic Data and Nuclear Data Tables, 1990, 44, 305-348.	0.9	57
511	A study of core effects in quasimolecular structure. Computational and Theoretical Chemistry, 1990, 205, 43-61.	1.5	2
512	Doubly excited states populated in collisions of O8+ions with He and H2at 1.24 keV amu-1. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, 3659-3675.	0.6	27
513	Comment on 'Calculations of energies of intrashell doubly excited states of beryllium-like ions'. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, L83-L85.	0.6	6
514	Photoionization of He-like systems below the N=2 threshold. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, 4263-4274.	0.6	39
515	Feshbach-model potential approach for the study of resonant and bound states of Be-like ions. Physical Review A, 1990, 41, 3534-3544.	1.0	47
516	Theoretical partial widths of the $1P\hat{A}^{\circ}(3s3p)$ resonant state of the He atom. Physical Review A, 1990, 41, 6544-6547.	1.0	6
517	Core effects in atomic resonances. A comparison between 1,3P 0 (3l 3l') states of Heâ€like and Be†systems. Journal of Chemical Physics, 1989, 91, 376-380.	like 1.2	7
518	Double electron capture in collisions of the helium-like ions N5+, O6+and Ne8+with helium atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22, L121-L127.	0.6	33
519	A new method to calculate lifetimes of atomic and molecular autoionizing states. Computational and Theoretical Chemistry, 1989, 202, 235-247.	1.5	1
520	Phase shifts of continuum functions through a discretization method. Chemical Physics Letters, 1989, 157, 146-150.	1.2	16
521	CHARACTERISTICS OF THE HELIUM-LIKE S ^e (3l, nl') AUTOIONIZING STATES. Journal De Physique Colloque, 1989, 50, C1-105-C1-110.	0.2	4
522	ATOMIC AND MOLECULAR AUTOIONIZING STATES. A THEORETICAL APPROACH. Journal De Physique Colloque, 1989, 50, C1-37-C1-52.	0.2	0

#	Article	IF	CITATIONS
523	EXTENSION OF THE CONVENTIONAL AND PSEUDOPOTENTIAL FESHBACH METHODS TO THE STUDY OF "TWO ACTIVE ELECTRONS + CORE" RESONANCE STATES. APPLICATION TO C ²⁺ (1s ² 3 3 ') and Ne ⁶⁺ (1s ² 3 3 ') SYSTEMS. Journal De Physique Colloque, 1989, 50, C1-99-C1-103.	0.2	0
524	Theoretical study of the rotational predissociation of the c 3Ï€u state of H2. Chemical Physics Letters, 1988, 147, 246-252.	1.2	8
525	Continuum versus discretized wavefunctions. The importance of being well normalized. Chemical Physics Letters, 1988, 149, 85-88.	1.2	7
526	A practical solution to the "unknown normalization―problem. International Journal of Quantum Chemistry, 1988, 33, 279-300.	1.0	66
527	Energies and widths of (1s23l3l′) resonant states ofC2+,N3+,O4+, andNe6+. Physical Review A, 1988, 38, 1094-1097.	1.0	26
528	Comparison of the conventional and pseudopotential Feshbach methods: N5+(3l,) Tj ETQq0 0 0 rgBT /Overlock 1 2261-2272.	0 Tf 50 54 0.6	17 Td (3l')1Se 19
529	Feshbach Resonant Energies and Widths in a Pseudopotential Approach. Europhysics Letters, 1987, 4, 799-804.	0.7	38
530	Simple discretization method for autoionization widths. III. Molecules. Physical Review A, 1987, 36, 4203-4211.	1.0	19
531	Adiabatic energies and radial couplings of the $3\hat{l}_{\pm}$ +u states of H2. Journal of Chemical Physics, 1987, 86, 4982-4989.	1.2	27
532	Simple discretization method for autoionization widths. II. Atoms. Physical Review A, 1987, 36, 4187-4202.	1.0	51
533	Simple discretization method for autoionization widths. I. Theory. Physical Review A, 1987, 36, 4179-4186.	1.0	54
534	Molecular treatment of the ion-pair formation reaction in $H(1s)+H(1s)$ collisions. Physical Review A, 1987, 35, 60-65.	1.0	13
535	Feshbach and pseudopotential theories. A useful analogy. Journal of Chemical Physics, 1987, 87, 6635-6642.	1.2	35
536	Feshbachâ€type calculation of autoionizing states of the BeHe4+quasimolecule. Journal of Chemical Physics, 1987, 86, 6927-6936.	1.2	7
537	Molecular (Feshbach) treatment of charge exchange Li3++He collisions. I. Energies and couplings. Journal of Chemical Physics, 1986, 84, 5412-5421.	1.2	10
538	Single and double charge transfer inBe4++He collisions: A molecular (Feshbach) approach. Physical Review A, 1986, 34, 4675-4681.	1.0	25
539	Molecular (Feshbach) treatment of charge exchange Li3++He collisions. II. Cross sections. Journal of Chemical Physics, 1986, 84, 5422-5426.	1.2	15