Joo-Il Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5998118/publications.pdf Version: 2024-02-01

LOO-LI DADK

#	Article	IF	CITATIONS
1	Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports. Fuel Processing Technology, 2013, 109, 172-178.	3.7	58
2	Phosphate-Modified TiO ₂ /ZrO ₂ Nanofibrous Web Composite Membrane for Enhanced Performance and Durability of High-Temperature Proton Exchange Membrane Fuel Cells. Energy & Fuels, 2017, 31, 7645-7652.	2.5	48
3	Characterization and analysis of vanadium and nickel species in atmospheric residues. Fuel, 2014, 117, 783-791.	3.4	27
4	Urea/nitric acid co-impregnated pitch-based activated carbon fiber for the effective removal of formaldehyde. Journal of Industrial and Engineering Chemistry, 2019, 80, 98-105.	2.9	26
5	A Brief Review of Formaldehyde Removal through Activated Carbon Adsorption. Applied Sciences (Switzerland), 2022, 12, 5025.	1.3	22
6	The characterization of metal complexes in typical Kuwait atmospheric residues using both GPC coupled with ICP–MS and HT GC–AED. Journal of Industrial and Engineering Chemistry, 2016, 34, 204-212.	2.9	20
7	Poly(ether imide) nanofibrous web composite membrane with SiO2/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells. Journal of Industrial and Engineering Chemistry, 2019, 74, 7-13.	2.9	15
8	Hydrotreating Reactivities of Atmospheric Residues and Correlation with Their Composition and Properties. Energy & Fuels, 2018, 32, 6726-6736.	2.5	14
9	Effect of pore size in activated carbon on the response characteristic of electric double layer capacitor. Journal of Industrial and Engineering Chemistry, 2021, 102, 321-326.	2.9	9
10	Behaviors of metal compounds during hydrodemetallization of atmospheric residue. Journal of Industrial and Engineering Chemistry, 2016, 40, 34-39.	2.9	8
11	Synthesis of surface-replicated ultra-thin silica hollow nanofibers using structurally different carbon nanofibers as templates. Journal of Solid State Chemistry, 2019, 272, 21-26.	1.4	8
12	Quantitative analysis of BF4â^' ions infiltrated into micropores of activated carbon fibers using nuclear magnetic resonance. RSC Advances, 2014, 4, 16726.	1.7	7
13	Behaviors of Cellulose-Based Activated Carbon Fiber for Acetaldehyde Adsorption at Low Concentration. Applied Sciences (Switzerland), 2020, 10, 25.	1.3	7
14	Molecular Characteristics of Light Cycle Oil Hydrodesulfurization over Silica–Alumina-Supported NiMo Catalysts. ACS Omega, 2020, 5, 29746-29754.	1.6	7
15	¹⁹ F <i>Ex Situ</i> Solid-State NMR Study on Structural Differences in Pores of Activated Carbon Series Derived from Chemical and Physical Activation Processes for EDLCs. Journal of Physical Chemistry C, 2020, 124, 12457-12465.	1.5	6
16	Characteristics on catalytic removal of sulfur and nitrogen from atmospheric residues at the molecular level. Catalysis Today, 2022, 388-389, 259-268.	2.2	6
17	Characterization of metal complexes in Kuwait atmospheric residues. Fuel Processing Technology, 2014, 126, 497-503.	3.7	4
18	Light Cycle Oil Source for Hydrogen Production through Autothermal Reforming using Ruthenium doped Perovskite Catalysts. Catalysts, 2020, 10, 1039.	1.6	3

#	Article	IF	CITATIONS
19	Structural pore elucidation of super-activated carbon based on the micro-domain structure model. Journal of Industrial and Engineering Chemistry, 2021, 101, 186-194.	2.9	3
20	Molecular Behaviors on Asphaltenes during Atmospheric Residue Hydrodesulfurization. Energy & Fuels, 2021, 35, 13644-13653.	2.5	2