Maolin Pang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/59979/maolin-pang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23,850 87 403 134 h-index g-index citations papers 28,744 8.5 421 7.55 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
403	Enhancing the Electron Transport, Quantum Yield, and Catalytic Performance of Carbonized Polymer Dots via Mn?O Bridges <i>Small</i> , 2022 , e2106863	11	O
402	Regulation of Local Site Structures to Stabilize Mixed-Valence Eu under a Reducing Atmosphere for Multicolor Photoluminescence <i>Inorganic Chemistry</i> , 2022 , 61, 1756-1764	5.1	0
401	Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. <i>Coordination Chemistry Reviews</i> , 2022 , 451, 214267	23.2	13
400	Enhancing the Electron Transport, Quantum Yield, and Catalytic Performance of Carbonized Polymer Dots via Mn?O Bridges (Small 13/2022). <i>Small</i> , 2022 , 18, 2270064	11	
399	Boron-Based Nanosheets for Ultrasound-Mediated Synergistic Cancer Therapy. <i>Chemical Engineering Journal</i> , 2022 , 440, 135812	14.7	2
398	Two Selective Sites Control of Cr 3+ -Doped ABO 4 Phosphors for Tuning Ultra-Broadband Near-Infrared Photoluminescence and Multi-Applications. <i>Laser and Photonics Reviews</i> , 2022 , 16, 21004	5 <mark>8</mark> 3	17
397	Double-activation of mitochondrial permeability transition pore opening via calcium overload and reactive oxygen species for cancer therapy <i>Journal of Nanobiotechnology</i> , 2022 , 20, 188	9.4	4
396	Highly efficient Fe-doped ABB'O (A = Sr, Ca; B, B' = In, Sb, Sn) broadband near-infrared-emitting phosphors for spectroscopic analysis <i>Light: Science and Applications</i> , 2022 , 11, 112	16.7	12
395	Enhancing the stability of CsPbX (X = Br, I) through combination with Y-zeolites for WLED application. <i>Dalton Transactions</i> , 2021 , 50, 17281-17289	4.3	О
394	Antimony-Doped Lead-Free Zero-Dimensional Tin(IV)-Based OrganicInorganic Metal Halide Hybrids with High Photoluminescence Quantum Yield and Remarkable Stability. <i>Advanced Optical Materials</i> , 2021 , 9, 2101637	8.1	5
393	Facile Synthesis of a Cubic Porphyrin-Based Covalent Organic Framework for Combined Breast Cancer Therapy. <i>ACS Applied Materials & Materi</i>	9.5	5
392	2D Piezoelectric Bi MoO Nanoribbons for GSH-Enhanced Sonodynamic Therapy. <i>Advanced Materials</i> , 2021 , e2106838	24	33
391	Tumor-Microenvironment-Activated Reactive Oxygen Species Amplifier for Enzymatic Cascade Cancer Starvation/Chemodynamic /Immunotherapy. <i>Advanced Materials</i> , 2021 , 34, e2106010	24	21
390	Covalent Organic Framework-Titanium Oxide Nanocomposite for Enhanced Sonodynamic Therapy. <i>Bioconjugate Chemistry</i> , 2021 , 32, 661-666	6.3	6
389	Single-Atom Pd Nanozyme for Ferroptosis-Boosted Mild-Temperature Photothermal Therapy. Angewandte Chemie - International Edition, 2021, 60, 12971-12979	16.4	101
388	Conferring Ti-Based MOFs with Defects for Enhanced Sonodynamic Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2100333	24	64
387	Single-Atom Pd Nanozyme for Ferroptosis-Boosted Mild-Temperature Photothermal Therapy. <i>Angewandte Chemie</i> , 2021 , 133, 13081-13089	3.6	9

(2021-2021)

386	Simultaneous Broadening and Enhancement of Cr Photoluminescence in LiIn SbO by Chemical Unit Cosubstitution: Night-Vision and Near-Infrared Spectroscopy Detection Applications. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14644-14649	16.4	44
385	Statistical analysis of helium bubbles in transmission electron microscopy images based on machine learning method. <i>Nuclear Science and Techniques/Hewuli</i> , 2021 , 32, 1	2.1	2
384	Simultaneous Broadening and Enhancement of Cr3+ Photoluminescence in Liln2SbO6 by Chemical Unit Cosubstitution: Night-Vision and Near-Infrared Spectroscopy Detection Applications. Angewandte Chemie, 2021, 133, 14765-14770	3.6	2
383	NIR-Triggered Multi-Mode Antitumor Therapy Based on Bi Se /Au Heterostructure with Enhanced Efficacy. <i>Small</i> , 2021 , 17, e2100961	11	9
382	A Tumor-Microenvironment-Responsive Nanocomposite for Hydrogen Sulfide Gas and Trimodal-Enhanced Enzyme Dynamic Therapy. <i>Advanced Materials</i> , 2021 , 33, e2101223	24	22
381	Lanthanide-Based Peptide-Directed Visible/Near-Infrared Imaging and Inhibition of LMP1. <i>Jacs Au</i> , 2021 , 1, 1034-1043		3
380	Upconverted Metal-Organic Framework Janus Architecture for Near-Infrared and Ultrasound Co-Enhanced High Performance Tumor Therapy. <i>ACS Nano</i> , 2021 ,	16.7	33
379	A Robust Narrow Bandgap Vanadium Tetrasulfide Sonosensitizer Optimized by Charge Separation Engineering for Enhanced Sonodynamic Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2101467	24	27
378	Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. <i>Coordination Chemistry Reviews</i> , 2021 , 439, 213945	23.2	27
377	Solvatochromic Photoluminescent Effects in All-Inorganic Manganese(II)-Based Perovskites by Highly Selective Solvent-Induced Crystal-to-Crystal Phase Transformations. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3699-3707	16.4	24
376	Solvatochromic Photoluminescent Effects in All-Inorganic Manganese(II)-Based Perovskites by Highly Selective Solvent-Induced Crystal-to-Crystal Phase Transformations. <i>Angewandte Chemie</i> , 2021 , 133, 3743-3751	3.6	7
375	Construction of thiol-capped ultrasmall Au-Bi bimetallic nanoparticles for X-ray CT imaging and enhanced antitumor therapy efficiency. <i>Biomaterials</i> , 2021 , 264, 120453	15.6	20
374	Improved Moisture-Resistant and Luminescence Properties of a Red Phosphor Based on Dodec-fluoride KRbGeF:Mn through Surface Modification. <i>Inorganic Chemistry</i> , 2021 , 60, 231-238	5.1	7
373	Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. <i>Advanced Materials</i> , 2021 , 33, e2004788	24	69
372	Nanozyme-Initiated In Situ Cascade Reactions for Self-Amplified Biocatalytic Immunotherapy. <i>Advanced Materials</i> , 2021 , 33, e2006363	24	21
371	3D Rotation-Trackable and Differentiable Micromachines with Dimer-Type Structures for Dynamic Bioanalysis. <i>Advanced Intelligent Systems</i> , 2021 , 3, 2000205	6	2
370	Intelligent MoS-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/ chemodynamic therapy/ immunotherapy. <i>Biomaterials</i> , 2021 , 268, 120545	15.6	48
369	Cr,Yb-codoped CaLaHfAlO garnet phosphor: electronic structure, broadband NIR emission and energy transfer properties. <i>Dalton Transactions</i> , 2021 , 50, 908-916	4.3	7

368	A covalent organic framework-based multifunctional therapeutic platform for enhanced photodynamic therapy via catalytic cascade reactions. <i>Science China Materials</i> , 2021 , 64, 488-497	7.1	18
367	Dual-Targeting Peptide-Guided Approach for Precision Delivery and Cancer Monitoring by Using a Safe Upconversion Nanoplatform. <i>Advanced Science</i> , 2021 , 8, e2002919	13.6	17
366	Scratching the Surface of Unventured Possibilities with In Situ Self-Assembly: Protease-Activated Developments for Imaging and Therapy <i>ACS Applied Bio Materials</i> , 2021 , 4, 2192-2216	4.1	4
365	All-inorganic tin-doped Cs2BiAgCl6 double perovskites with stable blue photoluminescence for WLEDs. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 8862-8873	7.1	2
364	The effect of local structure on the luminescence of Eu2+ in ternary phosphate solid solutions by cationic heterovalent substitution and their application in white LEDs. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1085-1096	7.1	3
363	Enhancing and tuning broadband near-infrared (NIR) photoluminescence properties in Cr3+-doped Ca2YHf2Al3O12 garnet phosphors via Ce3+/Yb3+-codoping for LED applications. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4815-4824	7.1	21
362	NIR-triggered biodegradable MOF-coated upconversion nanoparticles for synergetic chemodynamic/photodynamic therapy with enhanced efficacy. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 2624-2633	6.8	10
361	Urchin-Shaped Metal Organic/Hydrogen-Bonded Framework Nanocomposite as a Multifunctional Nanoreactor for Catalysis-Enhanced Synergetic Therapy. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 4825-4834	9.5	20
360	Facile synthesis of Fe-baicalein nanoparticles for photothermal/chemodynamic therapy with accelerated Fe/Fe conversion. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 3295-3299	7.3	4
359	Manganese oxide nanomaterials boost cancer immunotherapy. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 7117-7131	7.3	5
358	Encapsulation of lead halide perovskite quantum dots in mesoporous NaYF matrices with enhanced stability for anti-counterfeiting. <i>Dalton Transactions</i> , 2021 , 50, 10299-10309	4.3	5
357	Thermally stable and highly efficient red-emitting Eu-doped CsGdGeO phosphors for WLEDs: non-concentration quenching and negative thermal expansion. <i>Light: Science and Applications</i> , 2021 , 10, 29	16.7	69
356	Advances in Near-Infrared Luminescent Materials without Cr3+: Crystal Structure Design, Luminescence Properties, and Applications. <i>Chemistry of Materials</i> , 2021 , 33, 5496-5526	9.6	22
355	A Robust Oxygen-Carrying Hemoglobin-Based Natural Sonosensitizer for Sonodynamic Cancer Therapy. <i>Nano Letters</i> , 2021 , 21, 6042-6050	11.5	13
354	Preselectable Optical Fingerprints of Heterogeneous Upconversion Nanoparticles. <i>Nano Letters</i> , 2021 , 21, 7659-7668	11.5	10
353	Biodegradable Upconversion Nanoparticles Induce Pyroptosis for Cancer Immunotherapy. <i>Nano Letters</i> , 2021 , 21, 8281-8289	11.5	15
352	Multifunctional carbon monoxide nanogenerator as immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. <i>Biomaterials</i> , 2021 , 277, 121120	15.6	12
351	Synthesis of porphyrin-incorporating covalent organic frameworks for sonodynamic therapy. <i>Chemical Communications</i> , 2021 , 57, 8178-8181	5.8	5

(2020-2021)

350	Tumor microenvironment-triggered cancer vaccines inducing dual immunogenic cell death for elevated antitumor and antimetastatic therapy. <i>Nanoscale</i> , 2021 , 13, 10906-10915	7.7	2
349	A Multifunctional Nanovaccine based on L-Arginine-Loaded Black Mesoporous Titania: Ultrasound-Triggered Synergistic Cancer Sonodynamic Therapy/Gas Therapy/Immunotherapy with Remarkably Enhanced Efficacy. <i>Small</i> , 2021 , 17, e2005728	11	22
348	One-Step Integration of Tumor Microenvironment-Responsive Calcium and Copper Peroxides Nanocomposite for Enhanced Chemodynamic/Ion-Interference Therapy ACS Nano, 2021,	16.7	17
347	Core-Shell Structured Upconversion/Lead-Free Perovskite Nanoparticles for Anticounterfeiting Applications <i>Angewandte Chemie - International Edition</i> , 2021 , e202115136	16.4	1
346	Iron P otassium on Single-Walled Carbon Nanotubes as Efficient Catalyst for CO2 Hydrogenation to Heavy Olefins. <i>ACS Catalysis</i> , 2020 , 10, 6389-6401	13.1	34
345	Copper-Doped Nanoscale Covalent Organic Polymer for Augmented Photo/Chemodynamic Synergistic Therapy and Immunotherapy. <i>Bioconjugate Chemistry</i> , 2020 , 31, 1661-1670	6.3	39
344	A covalent organic framework as a nanocarrier for synergistic phototherapy and immunotherapy. Journal of Materials Chemistry B, 2020 , 8, 5451-5459	7.3	29
343	Recent Advances in Bismuth Ion-Doped Phosphor Materials: Structure Design, Tunable Photoluminescence Properties, and Application in White LEDs. <i>Advanced Optical Materials</i> , 2020 , 8, 190	1993	82
342	MnO Nanospikes as Nanoadjuvants and Immunogenic Cell Death Drugs with Enhanced Antitumor Immunity and Antimetastatic Effect. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 16381-16384	16.4	106
341	MnOx Nanospikes as Nanoadjuvants and Immunogenic Cell Death Drugs with Enhanced Antitumor Immunity and Antimetastatic Effect. <i>Angewandte Chemie</i> , 2020 , 132, 16523	3.6	2
340	AuPt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy / phototherapy. <i>Biomaterials</i> , 2020 , 252, 120093	15.6	104
339	Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. <i>Journal of Controlled Release</i> , 2020 , 324, 104-123	11.7	16
338	Facile fabrication of Eu-1,4-NDC-fcu-MOF particles for sensing of benzidine. <i>Main Group Chemistry</i> , 2020 , 19, 117-124	0.6	3
337	Polymer ligands induced remarkable spectral shifts in all-inorganic lead halide perovskite nanocrystals. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9968-9974	7.1	5
336	Yellow/Orange-Emitting ABZn2Ga2O7:Bi3+(A = Ca, Sr; B = Ba, Sr) Phosphors: Optical Temperature Sensing and White Light-Emitting Diode Applications. <i>Chemistry of Materials</i> , 2020 , 32, 3065-3077	9.6	70
335	(Ba,Sr)LaZnTaO6:Mn4+ far red emitting phosphors for plant growth LEDs: structure and photoluminescence properties. <i>New Journal of Chemistry</i> , 2020 , 44, 6163-6172	3.6	5
334	AgN-Catalyzed Hydroazidation of Terminal Alkynes and Mechanistic Studies. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7083-7091	16.4	13
333	Highly efficient and stable CsPbBr3 perovskite quantum dots by encapsulation in dual-shell hollow silica spheres for WLEDs. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 2060-2071	6.8	20

332	Cu MoS /Au Heterostructures with Enhanced Catalase-Like Activity and Photoconversion Efficiency for Primary/Metastatic Tumors Eradication by Phototherapy-Induced Immunotherapy. <i>Small</i> , 2020 , 16, e1907146	11	57
331	Virus-Like FeO@BiS Nanozymes with Resistance-Free Apoptotic Hyperthermia-Augmented Nanozymitic Activity for Enhanced Synergetic Cancer Therapy. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 11320-11328	9.5	35
330	A Novel PtIIiO2 Heterostructure with Oxygen-Deficient Layer as Bilaterally Enhanced Sonosensitizer for Synergistic Chemo-Sonodynamic Cancer Therapy. <i>Advanced Functional Materials</i> , 2020 , 30, 1908598	15.6	108
329	Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy. <i>Biomaterials</i> , 2020 , 240, 119850	15.6	55
328	Tunable color emission in LaScO3:Bi3+,Tb3+,Eu3+ phosphor. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 3273-3285	3.8	12
327	In Situ Light-Initiated Ligands Cross-Linking Enables Efficient All-Solution-Processed Perovskite Light-Emitting Diodes. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1154-1161	6.4	23
326	Core-shell structured 5-FU@ZIF-90@ZnO as a biodegradable nanoplatform for synergistic cancer therapy. <i>Nanoscale</i> , 2020 , 12, 3846-3854	7.7	25
325	Manganese Oxide Nanomaterials: Synthesis, Properties, and Theranostic Applications. <i>Advanced Materials</i> , 2020 , 32, e1905823	24	166
324	Controllable synthesis of hollow porous silica nanotubes/CuS nanoplatform for targeted chemo-photothermal therapy. <i>Science China Materials</i> , 2020 , 63, 864-875	7.1	7
323	General method for highly controlled preparation of ceramic hollow spheres from core-shell structures. <i>International Journal of Applied Ceramic Technology</i> , 2020 , 17, 2220-2227	2	
322	Highly Efficient Cyan-Green Emission in Self-Activated RbRVO (R = Y, Lu) Vanadate Phosphors for Full-Spectrum White Light-Emitting Diodes (LEDs). <i>Inorganic Chemistry</i> , 2020 , 59, 6026-6038	5.1	22
321	Improved luminescence properties of a novel red dodec-fluoride phosphor Ba3Sc2F12:Mn4+ with extraordinary thermal stability for WLED application. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 6299-63	0 ⁷ 5 ^{.1}	14
320	The effects of biochar as the electron shuttle on the ferrihydrite reduction and related arsenic (As) fate. <i>Journal of Hazardous Materials</i> , 2020 , 390, 121391	12.8	21
319	Realizing an impressive red-emitting Ca9MnNa(PO4)7 phosphor through a dual function based on disturbing structural confinement and energy transfer. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 285-29	9 3 .1	29
318	Highly Efficient Green-to-Yellowish-Orange Emitting Eu2+-Doped Pyrophosphate Phosphors with Superior Thermal Quenching Resistance for w-LEDs. <i>Advanced Optical Materials</i> , 2020 , 8, 1901859	8.1	35
317	Ultra-broadband cyan-to-orange emitting Ba1+xSr1\(\text{IGa4O8:Bi3+ phosphors: luminescence control} and optical temperature sensing. \(\text{Journal of Materials Chemistry C, 2020, 8, 1598-1607} \)	7.1	35
316	Fabrication of ultralight 3D graphene/Pt aerogel via in situ gamma-ray irradiation and its application for the catalytic degradation of methyl orange. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2020 , 28, 425-434	1.8	3
315	Superior temperature sensing of small-sized upconversion nanocrystals for simultaneous bioimaging and enhanced synergetic therapy. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2020, 24, 102135	6	12

314	Recent Advances in Nanomaterial-Assisted Combinational Sonodynamic Cancer Therapy. <i>Advanced Materials</i> , 2020 , 32, e2003214	24	126
313	Facile solution synthesis of Bi/Yb ions co-doped CsNaAgInCl double perovskites with near-infrared emission. <i>Dalton Transactions</i> , 2020 , 49, 15231-15237	4.3	10
312	Insight into the Luminescence Alternation of Sub-30 nm Upconversion Nanoparticles with a Small NaHoF Core and Multi-Gd /Yb Coexisting Shells. <i>Small</i> , 2020 , 16, e2003799	11	10
311	Broadband near-infrared emission of La3Ga5GeO14:Tb3+,Cr3+ phosphors: energy transfer, persistent luminescence and application in NIR light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11760-11770	7.1	15
310	All-in-One Theranostic Nanomedicine with Ultrabright Second Near-Infrared Emission for Tumor-Modulated Bioimaging and Chemodynamic/Photodynamic Therapy. <i>ACS Nano</i> , 2020 , 14, 9613-96	5 3 §·7	97
309	Biocompatible CuO-decorated carbon nanoplatforms for multiplexed imaging and enhanced antitumor efficacy via combined photothermal therapy/chemodynamic therapy/chemotherapy. <i>Science China Materials</i> , 2020 , 63, 1818-1830	7.1	15
308	Broad-Band Excited and Tunable Luminescence of CaTbAlO:RE (RE = Ce and/or Eu) Nanocrystalline Phosphors for Near-UV WLEDs. <i>Inorganic Chemistry</i> , 2020 , 59, 12348-12361	5.1	9
307	Two-Step Sol © el Synthetic Strategy for Highly Dispersed Eu2+ Luminescence Centers for Tuning Emission. <i>Advanced Photonics Research</i> , 2020 , 1, 2000028	1.9	2
306	Broadband Near-Infrared Emitting CaLuScGaGeO:Cr Phosphors: Luminescence Properties and Application in Light-Emitting Diodes. <i>Inorganic Chemistry</i> , 2020 , 59, 13481-13488	5.1	47
305	Covalent Organic Framework-Based Nanocomposite for Synergetic Photo-, Chemodynamic-, and Immunotherapies. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 43456-43465	9.5	26
304	Enhanced Cyan Emission and Optical Tuning of Ca3Ga4O9:Bi3+ for High-Quality Full-Spectrum White Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2020 , 8, 2001037	8.1	31
303	Colorectal Tumor Microenvironment-Activated Bio-Decomposable and Metabolizable Cu O@CaCO Nanocomposites for Synergistic Oncotherapy. <i>Advanced Materials</i> , 2020 , 32, e2004647	24	59
302	Novel approaches for highly selective, room-temperature gas sensors based on atomically dispersed non-precious metals. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23784-23794	13	4
301	Comparative analysis on the photoluminescence properties of Cs2BF6:Mn4+ (B\pmGe, Si, Zr, Ti) red phosphors for WLEDs. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 1197-1208	3.8	8
300	Luminescence and Energy-Transfer Properties in Bi/Mn-Codoped BaGdNbO Double-Perovskite Phosphors for White-Light-Emitting Diodes. <i>Inorganic Chemistry</i> , 2019 , 58, 15507-15519	5.1	47
299	Accurate Control of CoreBhell Upconversion Nanoparticles through Anisotropic Strain Engineering. <i>Advanced Functional Materials</i> , 2019 , 29, 1903295	15.6	38
298	Mixing the valence control of Eu2+/Eu3+ and energy transfer construction of Eu2+/Mn2+ in the solid solution (1 Ⅸ)Ca3(PO4)2☒Ca9Y(PO4)7 for multichannel photoluminescence tuning. **Inorganic Chemistry Frontiers**, 2019**, 6, 2837-2849	6.8	20
297	Controllable Synthesis of Monodispersed NU-1000 Drug Carrier for Chemotherapy <i>ACS Applied Bio Materials</i> , 2019 , 2, 4436-4441	4.1	8

296	Yolk-Shell Structured Au Nanostar@Metal-Organic Framework for Synergistic Chemo-photothermal Therapy in the Second Near-Infrared Window. <i>Nano Letters</i> , 2019 , 19, 6772-6780	11.5	135
295	Enhanced photoconversion performance of NdVO/Au nanocrystals for photothermal/photoacoustic imaging guided and near infrared light-triggered anticancer phototherapy. <i>Acta Biomaterialia</i> , 2019 , 99, 295-306	10.8	17
294	New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. <i>Light: Science and Applications</i> , 2019 , 8, 15	16.7	173
293	Postsynthetic Ligand Exchange of Metal-Organic Framework for Photodynamic Therapy. <i>ACS Applied Materials & District Materials & Distri</i>	9.5	35
292	Carbon quantum dot-sensitized and tunable luminescence of Ca19Mg2(PO4)14:Ln3+ (Ln3+ = Eu3+ and/or Tb3+) nanocrystalline phosphors with abundant colors via a solgel process. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2361-2375	7.1	14
291	One-pot synthesis of SiO-coated Gd(WO):Yb/Ho nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition. <i>Dalton Transactions</i> , 2019 , 48, 10537-10546	4.3	9
290	Monodispersed CuSe Sensitized Covalent Organic Framework Photosensitizer with an Enhanced Photodynamic and Photothermal Effect for Cancer Therapy. <i>ACS Applied Materials & Discrete Science</i> , 2019 , 11, 23072-23082	9.5	70
289	Monodispersed Copper(I)-Based Nano Metal-Organic Framework as a Biodegradable Drug Carrier with Enhanced Photodynamic Therapy Efficacy. <i>Advanced Science</i> , 2019 , 6, 1900848	13.6	89
288	Intelligent Hollow Pt-CuS Janus Architecture for Synergistic Catalysis-Enhanced Sonodynamic and Photothermal Cancer Therapy. <i>Nano Letters</i> , 2019 , 19, 4134-4145	11.5	201
287	Controllable Eu-Doped Orthophosphate Blue-/Red-Emitting Phosphors: Charge Compensation and Lattice-Strain Control. <i>Inorganic Chemistry</i> , 2019 , 58, 6376-6387	5.1	26
286	Searching for the Optimized Luminescent Lanthanide Phosphor Using Heuristic Algorithms. <i>Inorganic Chemistry</i> , 2019 , 58, 6458-6466	5.1	9
285	Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion. <i>Nature Communications</i> , 2019 , 10, 1811	17.4	55
284	Boosting the antitumor efficacy over a nanoscale porphyrin-based covalent organic polymer via synergistic photodynamic and photothermal therapy. <i>Chemical Communications</i> , 2019 , 55, 6269-6272	5.8	33
283	Self-assembled CeVO/Ag nanohybrid as photoconversion agents with enhanced solar-driven photocatalysis and NIR-responsive photothermal/photodynamic synergistic therapy performance. <i>Nanoscale</i> , 2019 , 11, 10129-10136	7.7	31
282	Multichannel photoluminescence tuning in Eu-doped apatite phosphors via coexisting cation substitution, energy transfer and valence mixing. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5975-5987	7.1	31
281	Cation Substitution Induced Adjustment on Lattice Structure and Photoluminescence Properties of Mg14Ge5O24:Mn4+: Optimized Emission for w-LED and Thermometry Applications. <i>Advanced Optical Materials</i> , 2019 , 7, 1900093	8.1	47
280	One-pot in situ synthesis of CsPbX3@h-BN (X = Cl, Br, I) nanosheet composites with superior thermal stability for white LEDs. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4038-4042	7.1	31
279	MnO2-Disguised Upconversion Hybrid Nanocomposite: An Ideal Architecture for Tumor Microenvironment-Triggered UCL/MR Bioimaging and Enhanced Chemodynamic Therapy. <i>Chemistry of Materials</i> , 2019 , 31, 2651-2660	9.6	92

278	Upconversion-mediated ZnFeO nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy. <i>Chemical Science</i> , 2019 , 10, 4259-4271	9.4	116
277	Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. <i>Nature Communications</i> , 2019 , 10, 1087	17.4	89
276	Facile Fabrication of Nanoscale Porphyrinic Covalent Organic Polymers for Combined Photodynamic and Photothermal Cancer Therapy. <i>ACS Applied Materials & Description (Control of Control o</i>	2 ¹⁵ 123	326
275	Ion-Doped Poly(2-Nitro-1,4-Phenylenediamine) Hollow Nanospheres for Photothermal Therapy. <i>ACS Applied Nano Materials</i> , 2019 , 2, 2106-2111	5.6	3
274	Characterization of molten 2LiF B eF2 salt impregnated into graphite matrix of fuel elements for thorium molten salt reactor. <i>Nuclear Science and Techniques/Hewuli</i> , 2019 , 30, 1	2.1	4
273	Epitaxial Growth of CsPbX (X = Cl, Br, I) Perovskite Quantum Dots via Surface Chemical Conversion of Cs GeF Double Perovskites: A Novel Strategy for the Formation of Leadless Hybrid Perovskite Phosphors with Enhanced Stability. <i>Advanced Materials</i> , 2019 , 31, e1807592	24	54
272	A novel method to inspect coating thickness of tristructural isotropic fuel particles. <i>International Journal of Energy Research</i> , 2019 , 43, 2391-2401	4.5	1
271	One-Pot Synthesis of DOX@Covalent Organic Framework with Enhanced Chemotherapeutic Efficacy. <i>Chemistry - A European Journal</i> , 2019 , 25, 4315-4319	4.8	66
270	Bladder Cancer Photodynamic Therapeutic Agent with Off-On Magnetic Resonance Imaging Enhancement. <i>Advanced Therapeutics</i> , 2019 , 2, 1900068	4.9	13
269	O-Cu/ZIF-8@Ce6/ZIF-8@F127 Composite as a Tumor Microenvironment-Responsive Nanoplatform with Enhanced Photo-/Chemodynamic Antitumor Efficacy. <i>ACS Applied Materials & Description</i> (2019), 11, 31671-31680	9.5	71
268	Fine-Tuning Ho-Based Red-Upconversion Luminescence by Altering NaHoF4 Core Size and NaYbF4 Shell Thickness. <i>Chemistry of Materials</i> , 2019 , 31, 7898-7909	9.6	17
267	MnFeO-decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O self-sufficient photodynamic therapy. <i>Nanoscale</i> , 2019 , 11, 14654-146	67	23
266	Integration of a highly monodisperse covalent organic framework photosensitizer with cation exchange synthesized AgSe nanoparticles for enhanced phototherapy. <i>Chemical Communications</i> , 2019 , 55, 9164-9167	5.8	27
265	Fluorescence Detection and Dissociation of Amyloid-Especies for the Treatment of Alzheimer's Disease. <i>Advanced Therapeutics</i> , 2019 , 2, 1900054	4.9	12
264	A g-C3N4@Au@SrAl2O4:Eu2+,Dy3+ composite as an efficient plasmonic photocatalyst for round-the-clock environmental purification and hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19173-19186	13	29
263	Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging. <i>Chemical Science</i> , 2019 , 10, 8618-8633	9.4	64
262	Photoluminescence Control of UCr4C4-Type Phosphors with Superior Luminous Efficiency and High Color Purity via Controlling Site Selection of Eu2+ Activators. <i>Chemistry of Materials</i> , 2019 , 31, 9200-921	8 .6	62
261	Hyperthermia and Controllable Free Radical Coenhanced Synergistic Therapy in Hypoxia Enabled by Near-Infrared-II Light Irradiation. <i>ACS Nano</i> , 2019 , 13, 13144-13160	16.7	72

260	BMP-2-Loaded HAp:Ln (Ln = Yb, Er, Gd) Nanorods with Dual-Mode Imaging for Efficient MC3t3-E1 Cell Differentiation Regulation. <i>Langmuir</i> , 2019 , 35, 15287-15294	4	4
259	A Multifunctional Cascade Bioreactor Based on Hollow-Structured Cu MoS for Synergetic Cancer Chemo-Dynamic Therapy/Starvation Therapy/Phototherapy/Immunotherapy with Remarkably Enhanced Efficacy. <i>Advanced Materials</i> , 2019 , 31, e1905271	24	218
258	FeK on 3D Graphene Teolite Tandem Catalyst with High Efficiency and Versatility in Direct CO2 Conversion to Aromatics. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 17825-17833	8.3	27
257	Full visible light emission in Eu2+,Mn2+-doped Ca9LiY0.667(PO4)7 phosphors based on multiple crystal lattice substitution and energy transfer for warm white LEDs with high colour-rendering. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3644-3655	7.1	70
256	Recent Advances in Glucose-Oxidase-Based Nanocomposites for Tumor Therapy. <i>Small</i> , 2019 , 15, e1903	8895	97
255	Facile synthesis of Fe-p-aminophenol nanoparticles for photothermal therapy. <i>Dalton Transactions</i> , 2019 , 48, 16848-16852	4.3	2
254	Template-free synthesis and metalation of hierarchical covalent organic framework spheres for photothermal therapy. <i>Chemical Communications</i> , 2019 , 55, 14315-14318	5.8	21
253	Novel orange-yellow-green color-tunable Bi3+-doped Ba3Y4WLuwO9 (0 lw 🖽) luminescent materials: site migration and photoluminescence control. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 3598-30	563 ⁸	13
252	Luminescence color tuning and energy transfer properties in (Sr,Ba)2LaGaO5:Bi3+,Eu3+ solid solution phosphors: realization of single-phased white emission for WLEDs. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13536-13547	7.1	39
251	Azo Initiator Loaded Black Mesoporous Titania with Multiple Optical Energy Conversion for Synergetic Photo-Thermal-Dynamic Therapy. <i>ACS Applied Materials & Dynamic Therapy</i> , 11, 47730-47	79358	24
250	O2-Loaded pH-Responsive Multifunctional Nanodrug Carrier for Overcoming Hypoxia and Highly Efficient Chemo-Photodynamic Cancer Therapy. <i>Chemistry of Materials</i> , 2019 , 31, 483-490	9.6	69
249	Hydrogenated Titanium Oxide Decorated Upconversion Nanoparticles: Facile Laser Modified Synthesis and 808 nm Near-Infrared Light Triggered Phototherapy. <i>Chemistry of Materials</i> , 2019 , 31, 774	19784	68
248	Controllable Synthesis of Highly Uniform Nanosized HKUST-1 Crystals by LiquidBolidBolution Method. <i>Crystal Growth and Design</i> , 2019 , 19, 556-561	3.5	17
247	Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core-shell nanohybrids for cancer therapy. <i>Chemical Engineering Journal</i> , 2019 , 358, 369-378	14.7	62
246	Recent Advances of Membrane-Cloaked Nanoplatforms for Biomedical Applications. <i>Bioconjugate Chemistry</i> , 2018 , 29, 838-851	6.3	31
245	Enhanced Cellular Ablation by Attenuating Hypoxia Status and Reprogramming Tumor-Associated Macrophages via NIR Light-Responsive Upconversion Nanocrystals. <i>Bioconjugate Chemistry</i> , 2018 , 29, 928-938	6.3	53
244	Characterization and acid-mobilization study for typical iron-bearing clay mineral. <i>Journal of Environmental Sciences</i> , 2018 , 71, 222-232	6.4	10
243	Facile preparation of ion-doped poly(p-phenylenediamine) nanoparticles for photothermal therapy. <i>Chemical Communications</i> , 2018 , 54, 4862-4865	5.8	23

242	A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery. ChemSusChem, 2018, 11, 1880-18	86 .3	10
241	Glutathione Mediated Size-Tunable UCNPs-Pt(IV)-ZnFe O Nanocomposite for Multiple Bioimaging Guided Synergetic Therapy. <i>Small</i> , 2018 , 14, e1703809	11	79
240	Bioresponsive and near infrared photon co-enhanced cancer theranostic based on upconversion nanocapsules. <i>Chemical Science</i> , 2018 , 9, 3233-3247	9.4	62
239	Rational Design of Multifunctional Fe@Fe O @H-TiO Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging-Guided Photothermal Cancer Therapy. <i>Advanced Materials</i> , 2018 , 30, e1706747	24	79
238	Bismuth Nanoparticles with <code>lightlProperty</code> Served as a Multifunctional Probe for X-ray Computed Tomography and Fluorescence Imaging. <i>Chemistry of Materials</i> , 2018 , 30, 3301-3307	9.6	48
237	Highly Efficient Blue Emission and Superior Thermal Stability of BaAl12O19:Eu2+ Phosphors Based on Highly Symmetric Crystal Structure. <i>Chemistry of Materials</i> , 2018 , 30, 2389-2399	9.6	201
236	Highly Luminescent Lead Halide Perovskite Quantum Dots in Hierarchical CaF2 Matrices with Enhanced Stability as Phosphors for White Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2018 , 6, 1701343	8.1	75
235	Tunable luminescence and energy transfer properties in YVO4:Bi3+,Ln3+ (Ln = Dy, Sm, Eu) phosphors prepared by microwave sintering method. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 7941-7951	2.1	5
234	Synthesis and improved photoluminescence of a novel red phosphor LiSrGaF:Mn for applications in warm WLEDs. <i>Dalton Transactions</i> , 2018 , 47, 12944-12950	4.3	14
233	Near-infrared light-mediated rare-earth nanocrystals: recent advances in improving photon conversion and alleviating the thermal effect. <i>NPG Asia Materials</i> , 2018 , 10, 685-702	10.3	43
232	Full Color Luminescence Tuning in Bi/Eu-Doped LiCaMgVO Garnet Phosphors Based on Local Lattice Distortion and Multiple Energy Transfers. <i>Inorganic Chemistry</i> , 2018 , 57, 9251-9259	5.1	60
231	Tumor Microenvironment-Responsive Mesoporous MnO2-Coated Upconversion Nanoplatform for Self-Enhanced Tumor Theranostics. <i>Advanced Functional Materials</i> , 2018 , 28, 1803804	15.6	182
230	Nanoformulation of metal complexes: Intelligent stimuli-responsive platforms for precision therapeutics. <i>Nano Research</i> , 2018 , 11, 5474-5498	10	13
229	Controllable optical tuning and improvement in Li+,Eu3+-codoped BaSc2O4:Bi3+ based on energy transfer and charge compensation. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6449-6459	7.1	43
228	Broad color tuning of Bi3+/Eu3+-doped (Ba,Sr)3Sc4O9 solid solution compounds via crystal field modulation and energy transfer. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 9990-9999	7.1	61
227	Designed synthesis, morphology evolution and enhanced photoluminescence of a highly efficient red dodec-fluoride phosphor, Li3Na3Ga2F12:Mn4+, for warm WLEDs. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 491-499	7.1	94
226	Targeted iron nanoparticles with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance in vitro and in vivo. <i>Biomaterials</i> , 2018 , 155, 112-123	15.6	43
225	Interfacially synthesized Fe-soc-MOF nanoparticles combined with ICG for photothermal/photodynamic therapy. <i>Dalton Transactions</i> , 2018 , 47, 16329-16336	4.3	43

224	Photoluminescence tuning in a novel Bi3+/Mn4+ co-doped La2ATiO6:(A = Mg, Zn) double perovskite structure: phase transition and energy transfer. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13136-13147	7.1	53
223	One-Step Loading on Natural Mineral Halloysite Nanotube: An Effective Way to Enhance the Stability of Perovskite CsPbX3 (X = Cl, Br, I) Quantum Dots. <i>Advanced Optical Materials</i> , 2018 , 7, 180132	.3 ^{8.1}	22
222	Ultra-narrow band blue emission of Eu2+ in halogenated (Alumino)borate systems based on high lattice symmetry. <i>Journal of the American Ceramic Society</i> , 2018 , 102, 2353	3.8	3
221	Large-Pore Mesoporous-Silica-Coated Upconversion Nanoparticles as Multifunctional Immunoadjuvants with Ultrahigh Photosensitizer and Antigen Loading Efficiency for Improved Cancer Photodynamic Immunotherapy. <i>Advanced Materials</i> , 2018 , 30, e1802479	24	176
220	Magnetic Targeting, Tumor Microenvironment-Responsive Intelligent Nanocatalysts for Enhanced Tumor Ablation. <i>ACS Nano</i> , 2018 , 12, 11000-11012	16.7	247
219	New Insight for Luminescence Tuning Based on Interstitial sites Occupation of Eu2+ in Sr3Al2 \Bar{W} SixO5 \Bar{W} NxCl2 (x = 0 \Bar{D} .4). Advanced Optical Materials, 2018 , 6, 1800940	8.1	22
218	A novel red phosphor of Mn4+ ion-doped oxyfluoroniobate BaNbOF5 for warm WLED applications. <i>CrystEngComm</i> , 2018 , 20, 5641-5646	3.3	30
217	Formation mechanism and optimized luminescence of Mn4+-doped unequal dual-alkaline hexafluorosilicate Li0.5Na1.5SiF6. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 4983-4993	3.8	10
216	Controllable two-dimensional luminescence tuning in Eu2+,Mn2+ doped (Ca,Sr)9Sc(PO4)7 based on crystal field regulation and energy transfer. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6714-6725	7.1	41
215	Porous Graphene-Confined Fe-K as Highly Efficient Catalyst for CO Direct Hydrogenation to Light Olefins. <i>ACS Applied Materials & Direct Applied Materials & Direct Applied Materials & Direct Materials & </i>	9.5	61
214	Mini Review of TiO -Based Multifunctional Nanocomposites for Near-Infrared Light-Responsive Phototherapy. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800351	10.1	35
213	Emitting-tunable Eu(2+/3+)-doped Ca(8៧)La(2+x) (PO4)6៧(SiO4)xO2 apatite phosphor for n-UV WLEDs with high-color-rendering. <i>RSC Advances</i> , 2017 , 7, 1899-1904	3.7	16
212	MetalBrganic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3293-3303	13	76
211	Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species. <i>Nano Letters</i> , 2017 , 17, 928-937	11.5	416
210	Influence of Anion/Cation Substitution (Sr2+-iBa2+, Al3+-iSi4+, N3IiO2IIon Phase Transformation and Luminescence Properties of Ba3Si6O15:Eu2+ Phosphors. <i>Chemistry of Materials</i> , 2017 , 29, 1813-1829	9.6	86
209	An efficient rare-earth free deep red emitting phosphor for improving the color rendering of white light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2927-2935	7.1	75
208	808-nm-Light-Excited Lanthanide-Doped Nanoparticles: Rational Design, Luminescence Control and Theranostic Applications. <i>Advanced Materials</i> , 2017 , 29, 1605434	24	189
207	Multifunctional chitosan modified Gd2O3:Yb3+,Er3+@nSiO2@mSiO2 core/shell nanoparticles for pH responsive drug delivery and bioimaging. <i>RSC Advances</i> , 2017 , 7, 10287-10294	3.7	9

206	Structural Phase Transition of ThC Under High Pressure. Scientific Reports, 2017, 7, 96	4.9	12
205	Luminescence Properties of CaCe(PO):A (A = Eu/Tb/Mn) Phosphors with Abundant Colors: Abnormal Coexistence of Ce-Eu and Energy Transfer of Ce -iTb/Mn and Tb-Mn. <i>Inorganic Chemistry</i> , 2017 , 56, 6131-6140	5.1	56
204	Structure directing agents induced morphology evolution and phase transition from indium-based rho- to sod-ZMOF. <i>CrystEngComm</i> , 2017 , 19, 4265-4268	3.3	10
203	Charge convertibility and near infrared photon co-enhanced cisplatin chemotherapy based on upconversion nanoplatform. <i>Biomaterials</i> , 2017 , 130, 42-55	15.6	65
202	Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1700371	15.6	211
201	Effect of modulators on size and shape-controlled growth of highly uniform InNDCMOF particles. <i>CrystEngComm</i> , 2017 , 19, 1875-1878	3.3	22
200	Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging. <i>ACS Nano</i> , 2017 , 11, 4133-4144	16.7	262
199	Stimuli-responsive nanocomposites for magnetic targeting synergistic multimodal therapy and T/T-weighted dual-mode imaging. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2017 , 13, 875-8	883	11
198	Multichannel Luminescence Properties of Mixed-Valent Eu/Eu Coactivated SrAlBO Nanocrystalline Phosphors for Near-UV LEDs. <i>Inorganic Chemistry</i> , 2017 , 56, 13829-13841	5.1	47
197	Recent Progress in Near Infrared Light Triggered Photodynamic Therapy. <i>Small</i> , 2017 , 13, 1702299	11	171
196	cis-Platinum pro-drug-attached CuFeS nanoplates for in vivo photothermal/photoacoustic imaging and chemotherapy/photothermal therapy of cancer. <i>Nanoscale</i> , 2017 , 9, 16937-16949	7.7	60
195	Construction of Hierarchical Polymer Brushes on Upconversion Nanoparticles via NIR-Light-Initiated RAFT Polymerization. <i>ACS Applied Materials & District Materials</i> (2017), 9, 30414-30425	9.5	30
194	Multifunctional mesoporous ZrO encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. <i>Biomaterials</i> , 2017 , 147, 39-52	15.6	41
193	Design, preparation, and optimized luminescence of a dodec-fluoride phosphor Li3Na3Al2F12:Mn4+ for warm WLED applications. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10241-1025	07.1	69
192	Resonance Emission Enhancement (REE) for Narrow Band Red-Emitting AGeF:Mn (A = Na, K, Rb, Cs) Phosphors Synthesized via a Precipitation-Cation Exchange Route. <i>Inorganic Chemistry</i> , 2017 , 56, 11900	-∳1 ¹ 910	, 74
191	Enhancing the Stability of Perovskite Quantum Dots by Encapsulation in Crosslinked Polystyrene Beads via a SwellingBhrinking Strategy toward Superior Water Resistance. <i>Advanced Functional Materials</i> , 2017 , 27, 1703535	15.6	219
190	Pressure-induced structural transformations and polymerization in ThC. Scientific Reports, 2017, 7, 4587	'4 .9	10
189	Self-Templated Stepwise Synthesis of Monodispersed Nanoscale Metalated Covalent Organic Polymers for In Vivo Bioimaging and Photothermal Therapy. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2183	3 -2 188	27

188	Thiol-Ene Click Reaction as a Facile and General Approach for Surface Functionalization of Colloidal Nanocrystals. <i>Advanced Materials</i> , 2017 , 29, 1604878	24	39
187	In-core fuel management strategy for the basket-fuel-assembly molten salt reactor. <i>Nuclear Science and Techniques/Hewuli</i> , 2017 , 28, 1	2.1	1
186	Room-temperature synthesis and optimized photoluminescence of a novel red phosphor NaKSnF6:Mn4+ for application in warm WLEDs. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9255-9263	7.1	67
185	Synthesis of thorium sol for fabricating fuel kernels. <i>Nuclear Science and Techniques/Hewuli</i> , 2017 , 28, 1	2.1	О
184	Assessment of usefulness of synchrotron radiation techniques to determine arsenic species in hair and rice grain samples. <i>EXCLI Journal</i> , 2017 , 16, 25-34	2.4	2
183	A Hollow-Structured CuS@Cu S@Au Nanohybrid: Synergistically Enhanced Photothermal Efficiency and Photoswitchable Targeting Effect for Cancer Theranostics. <i>Advanced Materials</i> , 2017 , 29, 1701266	24	189
182	Photoluminescence and Energy Transfer Properties with Y+SiO4 Substituting Ba+PO4 in Ba3Y(PO4)3:Ce(3+)/Tb(3+), Tb(3+)/Eu(3+) Phosphors for w-LEDs. <i>Inorganic Chemistry</i> , 2016 , 55, 7593-60-	4 5.1	61
181	Structural evolution induced preferential occupancy of designated cation sites by Eu2+ in M5(Si3O9)2 (M = Sr, Ba, Y, Mn) phosphors. <i>RSC Advances</i> , 2016 , 6, 57261-57265	3.7	60
180	Integration of Upconversion Nanoparticles and Ultrathin Black Phosphorus for Efficient Photodynamic Theranostics under 808 nm Near-Infrared Light Irradiation. <i>Chemistry of Materials</i> , 2016 , 28, 4724-4734	9.6	174
179	808Inm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy. <i>Biomaterials</i> , 2016 , 101, 32-46	15.6	150
178	Deep red MGe4O9:Mn4+ (M = Sr, Ba) phosphors: structure, luminescence properties and application in warm white light emitting diodes. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6409-6416	7.1	95
177	Controllable drug release system based on phase change molecules as gatekeepers for bimodal tumor therapy with enhanced efficacy. <i>RSC Advances</i> , 2016 , 6, 65600-65606	3.7	3
176	Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 4884-4894	7.3	74
175	Tailored Synthesis of Octopus-type Janus Nanoparticles for Synergistic Actively-Targeted and Chemo-Photothermal Therapy. <i>Angewandte Chemie</i> , 2016 , 128, 2158-2161	3.6	18
174	Tailored Synthesis of Octopus-type Janus Nanoparticles for Synergistic Actively-Targeted and Chemo-Photothermal Therapy. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2118-21	16.4	199
173	Luminescence properties of M3(VO4)2:Eu3+(M = Ca, Sr, Ba) phosphors. <i>Journal of Materials Science</i> , 2016 , 51, 3545-3554	4.3	21
172	Novel yellowish-green light-emitting Ca10(PO4)6O:Ce(3+) phosphor: structural refinement, preferential site occupancy and color tuning. <i>Chemical Communications</i> , 2016 , 52, 3376-9	5.8	50
171	Optimization of upconversion luminescence of Nd(3+)-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery. <i>Dalton Transactions</i> , 2016 , 45, 1708-16	4.3	35

170	Ce3+ and Tb3+-doped lutetium-containing silicate phosphors: synthesis, structure refinement and photoluminescence properties. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3443-3453	7.1	51
169	808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite. <i>Dalton Transactions</i> , 2016 , 45, 13061-9	4.3	33
168	Functional nanomaterials for near-infrared-triggered cancer therapy. <i>Biomaterials Science</i> , 2016 , 4, 890-9	9029	109
167	Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy. <i>Nanoscale</i> , 2016 , 8, 6837-50	7.7	42
166	Photoluminescence tuning of Ca5(PO4)3Cl:Ce3+/Eu2+,Tb3+/Mn2+ phosphors: structure refinement, site occupancy, energy transfer and thermal stability. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1281-1294	7.1	73
165	Synthesis of highly monodispersed Ga-soc-MOF hollow cubes, colloidosomes and nanocomposites. <i>Chemical Communications</i> , 2016 , 52, 9901-4	5.8	41
164	Facile Synthesis of Highly Uniform Fe-MIL-88B Particles. Crystal Growth and Design, 2016, 16, 3565-3568	3.5	90
163	Recent development in phosphors with different emitting colors via energy transfer. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5507-5530	7.1	217
162	Controllable Eu valence for photoluminescence tuning in apatite-typed phosphors by the cation cosubstitution effect. <i>Chemical Communications</i> , 2016 , 52, 7376-9	5.8	30
161	The structural evolution and spectral blue shift of solid solution phosphors Sr3fhCamB2O6:Eu2+. <i>CrystEngComm</i> , 2016 , 18, 4597-4603	3.3	11
160	Site-preferential occupancy induced photoluminescence tuning in (Ca,Ba)5(PO4)3Cl:Eu2+ phosphors. <i>RSC Advances</i> , 2016 , 6, 43771-43779	3.7	13
159	Enhanced up/down-conversion luminescence and heat: Simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy. <i>Biomaterials</i> , 2016 , 105, 77-88	15.6	54
158	Interplay between local environments and photoluminescence of Eu2+ in Ba2Zr2Si3O12: blue shift emission, optimal bond valence and luminescence mechanisms. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3294-3303	7.1	25
157	UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. <i>ACS Nano</i> , 2015 , 9, 2584-99	16.7	397
156	Photoluminescence Properties of Efficient Blue-Emitting Phosphor £Ca1.65Sr0.35SiO4:Ce(3+): Color Tuning via the Substitutions of Si by Al/Ga/B. <i>Inorganic Chemistry</i> , 2015 , 54, 7992-8002	5.1	51
155	Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7652-7657	7.1	99
154	Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo. <i>New Journal of Chemistry</i> , 2015 , 39, 4987-4993	3.6	23
153	Multifunctional polyelectrolyte multilayers coated onto Gd2O3:Yb3+,Er3+@MSNs can be used as drug carriers and imaging agents. <i>RSC Advances</i> , 2015 , 5, 41985-41993	3.7	13

152	Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo. <i>Nano Research</i> , 2015 , 8, 1917-1931	10	35
151	Recent progress in luminescence tuning of Ce(3+) and Eu(2+)-activated phosphors for pc-WLEDs. <i>Chemical Society Reviews</i> , 2015 , 44, 8688-713	58.5	586
150	Tunable green to yellowish-orange phosphor Na3LuSi2O7:Eu2+,Mn2+via energy transfer for UV-LEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 11618-11628	7.1	53
149	One-step structure-directing approach to Ce3+-doped CaS luminescent micro-nanocrystals. <i>CrystEngComm</i> , 2015 , 17, 8676-8682	3.3	3
148	ZnGeN2 and ZnGeN2:Mn2+ phosphors: hydrothermal-ammonolysis synthesis, structure and luminescence properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9306-9317	7.1	31
147	Multimodal cancer imaging using lanthanide-based upconversion nanoparticles. <i>Nanomedicine</i> , 2015 , 10, 2573-91	5.6	28
146	Sr2Y8(SiO4)6O2:Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9989-9998	7.1	149
145	DNA-Hybrid-Gated Photothermal Mesoporous Silica Nanoparticles for NIR-Responsive and Aptamer-Targeted Drug Delivery. <i>ACS Applied Materials & Delivery and Materials & Delivery and Materials & Delivery and Materials & Delivery and Delivery </i>	9.5	88
144	A Single 808 nm Near-Infrared Light-Mediated Multiple Imaging and Photodynamic Therapy Based on Titania Coupled Upconversion Nanoparticles. <i>Chemistry of Materials</i> , 2015 , 27, 7957-7968	9.6	114
143	Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery. <i>Nanoscale</i> , 2015 , 7, 1839-48	7.7	80
142	Dose rate effect on micro-structure and hardness of Hastelloy-N irradiated by Xe ions. <i>Journal of Nuclear Science and Technology</i> , 2015 , 52, 829-836	1	2
141	A New Single 808 nm NIR Light-Induced Imaging-Guided Multifunctional Cancer Therapy Platform. <i>Advanced Functional Materials</i> , 2015 , 25, 3966-3976	15.6	163
140	Poly(Acrylic Acid) Modification of Nd3+-Sensitized Upconversion Nanophosphors for Highly Efficient UCL Imaging and pH-Responsive Drug Delivery. <i>Advanced Functional Materials</i> , 2015 , 25, 4717-	47529	196
139	Enhanced Antitumor Efficacy by 808 nm Laser-Induced Synergistic Photothermal and Photodynamic Therapy Based on a Indocyanine-Green-Attached W18O49 Nanostructure. <i>Advanced Functional Materials</i> , 2015 , 25, 7280-7290	15.6	138
138	An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release. <i>Biomaterials</i> , 2015 , 63, 115-27	15.6	175
137	An efficient green-emitting ⊞a1.65Sr0.35SiO4:Eu2+ phosphor for UV/n-UV w-LEDs: synthesis, luminescence and thermal properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6341-6349	7.1	33
136	Photoluminescence properties of single-component white-emitting Ca9Bi(PO4)7:Ce3+,Tb3+,Mn2+ phosphors for UV LEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7096-7104	7.1	84
135	Identification of the typical metal particles among haze, fog, and clear episodes in the Beijing atmosphere. <i>Science of the Total Environment</i> , 2015 , 511, 369-80	10.2	51

-	134	Multifunctional hollow CaF2:Yb(3+)/Er(3+)/Mn(2+)-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging. <i>Biomaterials</i> , 2015 , 50, 154-63	15.6	53
	133	Hollow Structured Y2O3:Yb/Er¶uxS Nanospheres with Controllable Size for Simultaneous Chemo/Photothermal Therapy and Bioimaging. <i>Chemistry of Materials</i> , 2015 , 27, 483-496	9.6	95
	132	Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. <i>Scientific Reports</i> , 2015 , 5, 7851	4.9	125
	131	Tunable luminescence and energy transfer properties in Ca8MgLu(PO4)7:Ce3+,Tb3+,Mn2+ phosphors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4471-4481	7.1	92
	130	Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes. <i>Biomaterials</i> , 2014 , 35, 2011-23	15.6	143
:	129	Characterization of protein expression of pollen following exposure to gaseous pollutants and vehicle exhaust particles. <i>Aerobiologia</i> , 2014 , 30, 281-291	2.4	31
	128	Characteristics and chemical compositions of particulate matter collected at the selected metro stations of Shanghai, China. <i>Science of the Total Environment</i> , 2014 , 496, 443-452	10.2	46
;	127	Synthesis and Luminescence Properties of YNbO4:A (A = Eu3+ and/or Tb3+) Nanocrystalline Phosphors via a Sol © el Process. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 27516-27524	3.8	65
	126	CaGdAlO4:Tb3+/Eu3+ as promising phosphors for full-color field emission displays. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9924-9933	7.1	91
	125	Luminescent LaF3:Yb3+/Er3+ crystals with self-assembling microstructures by a facile ionothermal process. <i>CrystEngComm</i> , 2014 , 16, 1056-1063	3.3	12
	124	YOF nano/micro-crystals: morphology controlled hydrothermal synthesis and luminescence properties. <i>CrystEngComm</i> , 2014 , 16, 2196-2204	3.3	46
:	123	Color-Tunable Luminescence of Y4Si2N2O7:Ce3+, Tb3+, Dy3+ Phosphors Prepared by the Soft-Chemical Ammonolysis Method. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 1955-1964	2.3	11
	122	Full Color Emission in ZnGa2O4: Simultaneous Control of the Spherical Morphology, Luminescent, and Electric Properties via Hydrothermal Approach. <i>Advanced Functional Materials</i> , 2014 , 24, 6581-6593	15.6	57
	121	Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties. <i>Chemical Society Reviews</i> , 2014 , 43, 7099-131	58.5	128
	120	Upconversion-Luminescent Core/Mesoporous-Silica-Shell-Structured ENaYF4:Yb3+,Er3+@SiO2@mSiO2 Composite Nanospheres: Fabrication and Drug-Storage/Release Properties. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 1906-1913	2.3	30
:	119	Nanospheres: Full Color Emission in ZnGa2O4: Simultaneous Control of the Spherical Morphology, Luminescent, and Electric Properties via Hydrothermal Approach (Adv. Funct. Mater. 42/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 6566-6566	15.6	3
	118	☐ron carbide as a low-temperature Fischer-Tropsch synthesis catalyst. <i>Nature Communications</i> , 2014 , 5, 5783	17.4	161
:	117	Highly luminescent lanthanide fluoride nanoparticles functionalized by aromatic carboxylate acids. <i>RSC Advances</i> , 2014 , 4, 55100-55107	3.7	11

116	Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. <i>Biomaterials</i> , 2014 , 35, 6359-68	15.6	92
115	Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10234-7	16.4	228
114	Multifunctional Up-Converting Nanocomposites with Smart Polymer Brushes Gated Mesopores for Cell Imaging and Thermo/pH Dual-Responsive Drug Controlled Release. <i>Advanced Functional Materials</i> , 2013 , 23, 4067-4078	15.6	183
113	Multifunctional NaYF4:Yb/Er/Gd nanocrystal decorated SiO2 nanotubes for anti-cancer drug delivery and dual modal imaging. <i>RSC Advances</i> , 2013 , 3, 8517	3.7	16
112	Drug Delivery: Multifunctional Up-Converting Nanocomposites with Smart Polymer Brushes Gated Mesopores for Cell Imaging and Thermo/pH Dual-Responsive Drug Controlled Release (Adv. Funct. Mater. 33/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 4062-4062	15.6	7
111	Hollow structured SrMoO:Yb, Ln (Ln = Tm, Ho, Tm/Ho) microspheres: tunable up-conversion emissions and application as drug carriers. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2056-2065	7.3	36
110	Drug Delivery: Multifunctional Upconversion Mesoporous Silica Nanostructures for Dual Modal Imaging and In Vivo Drug Delivery (Small 24/2013). <i>Small</i> , 2013 , 9, 4149-4149	11	
109	Single-Composition Trichromatic White-Emitting Ca9MgNa(PO4)7:Ce3+/Tb3+/Mn2+ Phosphors II Soft Chemical Synthesis, Luminescence, and Energy-Transfer Properties. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 4389-4397	2.3	35
108	Tunable luminescence and energy transfer properties of Ca5(PO4)2SiO4:Ce3+/Tb3+/Mn2+ phosphors. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2345	7.1	92
107	Tunable and White-Light Emission from Single-Phase Ca2YF4PO4:Eu2+,Mn2+ Phosphors for Application in W-LEDs. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 2947-2953	2.3	37
106	Drug Delivery: Platinum (IV) Pro-Drug Conjugated NaYF4:Yb3+/Er3+ Nanoparticles for Targeted Drug Delivery and Up-Conversion Cell Imaging (Adv. Healthcare Mater. 4/2013). <i>Advanced Healthcare Materials</i> , 2013 , 2, 514-514	10.1	3
105	Enhanced near-infrared quantum cutting luminescence in 1,2,4,5-benzenetetracarboxylic acid/NaYF4:Tb3+, Yb3+ hybrid nanoparticles. <i>RSC Advances</i> , 2013 , 3, 5491	3.7	18
104	Fischer Tropsch Synthesis Over Skeletal Fe?Ce Catalysts Leached from Rapidly Quenched Ternary Fe?Ce?Al Alloys. <i>ChemCatChem</i> , 2013 , 5, 3857-3865	5.2	11
103	Mechanisms in the saturation behavior for low voltage cathodoluminescence. <i>Journal of Applied Physics</i> , 2013 , 113, 093101	2.5	5
102	Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies. <i>Journal of Materials Chemistry</i> , 2012 , 22, 237	89	41
101	Drug Delivery: Up-Conversion Luminescent and Porous NaYF4:Yb3+, Er3+@SiO2 Nanocomposite Fibers for Anti-Cancer Drug Delivery and Cell Imaging (Adv. Funct. Mater. 13/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 2658-2658	15.6	
100	One-dimensional luminescent materials derived from the electrospinning process: preparation, characteristics and application. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5254		96
99	Well-dispersed KRE3F10 (RE = SmIlu, Y) nanocrystals: solvothermal synthesis and luminescence properties. <i>CrystEngComm</i> , 2012 , 14, 670-678	3.3	38

98	Multiform La2O3: Yb3+/Er3+/Tm3+ submicro-/microcrystals derived by hydrothermal process: Morphology control and tunable upconversion luminescence properties. <i>CrystEngComm</i> , 2012 , 14, 2100	3.3	34
97	Self-generated etchant for synthetic sculpturing of Cu2O-Au, Cu2O@Au, Au/Cu2O, and 3D-Au nanostructures. <i>Chemistry - A European Journal</i> , 2012 , 18, 14605-9	4.8	36
96	Monodisperse bifunctional Fe3O4@NaGdF4:Yb/Er@NaGdF4:Yb/Er core⊞hell nanoparticles. <i>RSC Advances</i> , 2012 , 2, 3194	3.7	45
95	Color tuning via energy transfer in Sr3In(PO4)3:Ce3+/Tb3+/Mn2+ phosphors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14262		127
94	Luminescence functionalization of MCM-48 by YVO4:Eu3+ for controlled drug delivery. <i>RSC Advances</i> , 2012 , 2, 3281	3.7	17
93	Tunable multicolor and bright white emission of one-dimensional NaLuF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10889		151
92	Self-assembled growth of LuVO4 nanoleaves: hydrothermal synthesis, morphology evolution, and luminescence properties. <i>RSC Advances</i> , 2012 , 2, 11067	3.7	23
91	Luminescence and energy transfer properties of Ca8Gd2(PO4)6O2:A (A = Ce3+/Eu2+/Tb3+/Dy3+/Mn2+) phosphors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19094		87
90	Synthesis of Li1NaxYF4:Yb3+/Ln3+ (0 lk l0.3, Ln = Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging. <i>Journal of Materials Chemistry</i> , 2012 , 22, 20618		34
89	General and facile method to fabricate uniform Y2O3:Ln3+ (Ln3+ = Eu3+, Tb3+) hollow microspheres using polystyrene spheres as templates. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21695		54
88	La(OH)3:Ln3+ and La2O3:Ln3+ (Ln = Yb/Er, Yb/Tm, Yb/Ho) Microrods: Synthesis and Up-conversion Luminescence Properties. <i>Crystal Growth and Design</i> , 2012 , 12, 306-312	3.5	54
87	A highly selective Raney Fe@HZSM-5 Fischer Tropsch synthesis catalyst for gasoline production: one-pot synthesis and unexpected effect of zeolites. <i>Catalysis Science and Technology</i> , 2012 , 2, 1625	5.5	69
86	Facile patterning of luminescent GdVO4:Ln (Ln = Eu3+, Dy3+, Sm3+) thin films by microcontact printing process. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	2
85	Highly monodisperse M(III)-based soc-MOFs (M = In and Ga) with cubic and truncated cubic morphologies. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13176-9	16.4	122
84	Design and Synthesis of Multifunctional Drug Carriers Based on Luminescent Rattle-Type Mesoporous Silica Microspheres with a Thermosensitive Hydrogel as a Controlled Switch. <i>Advanced Functional Materials</i> , 2012 , 22, 1470-1481	15.6	141
83	Up-Conversion Luminescent and Porous NaYF4:Yb3+, Er3+@SiO2 Nanocomposite Fibers for Anti-Cancer Drug Delivery and Cell Imaging. <i>Advanced Functional Materials</i> , 2012 , 22, 2713-2722	15.6	133
82	Drug Delivery: Design and Synthesis of Multifunctional Drug Carriers Based on Luminescent Rattle-Type Mesoporous Silica Microspheres with a Thermosensitive Hydrogel as a Controlled Switch (Adv. Funct. Mater. 7/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 1539-1539	15.6	4
81	Fine structural and morphological control of rare earth fluorides REF3 (RE = Lallu, Y) nano/microcrystals: microwave-assisted ionic liquid synthesis, magnetic and luminescent properties. CrystEngComm. 2011, 13, 1003-1013	3.3	103

80	Controllable and white upconversion luminescence in BaYF5:Ln3+ (Ln = Yb, Er, Tm) nanocrystals. Journal of Materials Chemistry, 2011 , 21, 717-723		141
79	Monodisperse CeF3, CeF3:Tb3+, and CeF3:Tb3+@LaF3 core/shell nanocrystals: synthesis and luminescent properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14610		43
78	Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16420		83
77	Color Tuning Luminescence of Ce3+/Mn2+/Tb3+-Triactivated Mg2Y8(SiO4)6O2 via Energy Transfer: Potential Single-Phase White-Light-Emitting Phosphors. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 218	82: ⁸ 18	9 2 99
76	Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano-/microcrystals viahydrothermal process. <i>CrystEngComm</i> , 2011 , 13, 474-482	3.3	85
75	Patterning of YVO4:Eu3+ Luminescent Films by Soft Lithography. <i>Advanced Functional Materials</i> , 2011 , 21, 456-463	15.6	77
74	Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite. <i>Advanced Functional Materials</i> , 2011 , 21, 2356-2365	15.6	154
73	Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5923		181
72	Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13334		260
71	Cyan-emitting Ti4+- and Mn2+-coactivated Mg2SnO4 as a potential phosphor to enlarge the color gamut for field emission display. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6477		36
70	A novel luminescent mesoporous silica/apatite composite for controlled drug release. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5505		27
69	Urchin-like GdPO4 and GdPO4:Eu3+ hollow spheres Ihydrothermal synthesis, luminescence and drug-delivery properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3686		92
68	Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10771-85	16.4	298
67	Layered organicIhorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. <i>CrystEngComm</i> , 2010 , 12, 2646	3.3	460
66	Self-assembled 3D architectures of lanthanide orthoborate: hydrothermal synthesis and luminescence properties. <i>CrystEngComm</i> , 2010 , 12, 549-557	3.3	37
65	Fabrication and photoluminescence properties of hollow Gd2O3:Ln (Ln = Eu3+, Sm3+) spheres via a sacrificial template method. <i>CrystEngComm</i> , 2010 , 12, 3717	3.3	63
64	Facile synthesis, growth mechanism and luminescence properties of uniform La(OH)3: Ho3+/Yb3+ and La2O3: Ho3+/Yb3+ nanorods. <i>CrystEngComm</i> , 2010 , 12, 4208	3.3	54
63	Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6831		600

(2009-2010)

62	and modulation of excitation: a novel strategy to white light emission. <i>Journal of Materials</i> Chemistry, 2010 , 20, 6674		119
61	Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives. <i>Langmuir</i> , 2010 , 26, 5963-70	4	95
60	Synthesis of a Multifunctional Nanocomposite with Magnetic, Mesoporous, and Near-IR Absorption Properties. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 16343-16350	3.8	63
59	Mesoporous silica-coated NaYF4:Yb3+, Er3+ particles for drug release. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 663-673	2.3	13
58	Fabrication and luminescent properties of CaWO4:Ln3+ (Ln = Eu, Sm, Dy) nanocrystals. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 2295-2305	2.3	38
57	Luminescence properties of sol-gel derived silica gels doped and undoped with RE-complexes(RE=Eu, Tb). <i>Chinese Journal of Chemistry</i> , 2010 , 15, 327-335	4.9	6
56	Influence of Capping Ligands on the Self-organization of Gold Nanoparticles into Superlattices from CTAB Reverse Micelles. <i>Chinese Journal of Chemistry</i> , 2010 , 20, 127-134	4.9	2
55	Luminescent CaWO4:Tb3+-Loaded Mesoporous Silica Composites for the Immobilization and Release of Lysozyme. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 2655-2662	2.3	15
54	Electrospinning Derived One-Dimensional LaOCl: Ln3+ (Ln = Eu/Sm, Tb, Tm) Nanofibers, Nanotubes and Microbelts with Multicolor-Tunable Emission Properties. <i>Advanced Functional Materials</i> , 2010 , 20, 3446-3456	15.6	196
53	Transformation behaviors of excluded pyrite during O2/CO2 combustion of pulverized coal. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2010 , 5, 304-309	1.3	15
52	Tm3+ and/or Dy3+ doped LaOCl nanocrystalline phosphors for field emission displays. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8936		116
51	Avidin conjugation to up-conversion phosphor NaYF4:Yb3+, Er3+ by the oxidation of the oligosaccharide chains. <i>Journal of Nanoparticle Research</i> , 2009 , 11, 821-829	2.3	13
50	Synthesis and Luminescent Properties of LaAlO3:RE3+ (RE = Tm, Tb) Nanocrystalline Phosphors via a Sol L el Process. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 8478-8483	3.8	84
49	Preparation and Luminescence Properties of Gd[sub 2]MoO[sub 6]:Eu[sup 3+] Nanofibers and Nanobelts by Electrospinning. <i>Journal of the Electrochemical Society</i> , 2009 , 156, J209	3.9	24
48	Luminescent and Mesoporous Europium-Doped Bioactive Glasses (MBG) as a Drug Carrier. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7826-7830	3.8	54
47	Uniform Ln(OH)3 and Ln2O3 (Ln = Eu, Sm) Submicrospindles: Facile Synthesis and Characterization. <i>Crystal Growth and Design</i> , 2009 , 9, 4127-4135	3.5	32
46	One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes: electrospinning preparation and luminescent properties. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2737		122
45	Controlled Synthesis of Ln3+ (Ln = Tb, Eu, Dy) and V5+ Ion-Doped YPO4 Nano-/Microstructures with Tunable Luminescent Colors. <i>Chemistry of Materials</i> , 2009 , 21, 4598-4607	9.6	131

44	Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13395-1	3404	107
43	Two-Dimensional ENaLuF4 Hexagonal Microplates. <i>Crystal Growth and Design</i> , 2008 , 8, 923-929	3.5	73
42	LaF3, CeF3, CeF3:Tb3+, and CeF3:Tb3+@LaF3 (CoreBhell) Nanoplates: Hydrothermal Synthesis and Luminescence Properties. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 2904-2910	3.8	120
41	Shape controllable synthesis and upconversion properties of NaYbF4/NaYbF4:Er3+ and YbF3/YbF3:Er3+ microstructures. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1353		112
40	LaGaO3:A (A = Sm3+ and/or Tb3+) as promising phosphors for field emission displays. <i>Journal of Materials Chemistry</i> , 2008 , 18, 221-228		137
39	A Novel and Efficient Route to Se Nano/Microstructures with Controllable Phase and Shape. <i>Crystal Growth and Design</i> , 2008 , 8, 3834-3839	3.5	14
38	Crystal Line Patterning and Enhanced Ion Conductivity of Li(Ge,Ti)[sub 2](PO[sub 4])[sub 3] Glasses by Yb Fiber Laser Irradiation. <i>Journal of the Electrochemical Society</i> , 2008 , 155, P74	3.9	2
37	Fabrication and crystal line patterning of Li1.3Al0.3Ti1.7(PO4)3 ion conductive glass by Ni atom heat processing method. <i>Applied Physics Letters</i> , 2008 , 92, 041112	3.4	10
36	Formation of NaNbO3-based conductive crystal lines on glass surface by Yb fiber laser irradiation. <i>Journal of Applied Physics</i> , 2008 , 103, 013112	2.5	6
35	Synthesis and structure of new low dimensional polymeric haloplumbate(II) complexes [Pb4Br12(C40H40N8)] and [Pb4Cl12(C40H40N8)][H2O. <i>Journal of Chemical Research</i> , 2008 , 2008, 141-	149.6	2
34	Synthesis, Structure, and Optical Properties of a Contorted -Oriented Layered Hybrid Perovskite: C3H11SN3PbBr4. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 1689-1692	2.3	45
33	Growth of Highly Crystalline CaMoO4:Tb3+ Phosphor Layers on Spherical SiO2 Particles via Sol G el Process: Structural Characterization and Luminescent Properties. <i>Crystal Growth and Design</i> , 2007 , 7, 1797-1802	3.5	61
32	Multiform Oxide Optical Materials via the Versatile Pechini-Type Sol © el Process: Synthesis and Characteristics. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 5835-5845	3.8	238
31	Synthesis and characterization of monodisperse spherical core-shell structured SiO2@Y3Al5O12:Ce3+/Tb3+ phosphors for field emission displays. <i>Journal of Nanoparticle Research</i> , 2007 , 9, 869-875	2.3	20
30	Y2O3: Eu3+ Microspheres: Solvothermal Synthesis and Luminescence Properties. <i>Crystal Growth and Design</i> , 2007 , 7, 730-735	3.5	199
29	Silica Supported Submicron SiO2@Y2SiO5:Eu3+ and SiO2@Y2SiO5:Ce3+/Tb3+ Spherical Particles with a CoreBhell Structure: SolGel Synthesis and Characterization. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 3667-3675	2.3	37
28	Fabrication of self-assembled palladium nanosheets using layered organic/inorganic hybrid as the template. <i>Nanotechnology</i> , 2006 , 17, 506-511	3.4	10
27	Fabrication and photoluminescence properties of core-shell structured spherical SiO2@Gd2Ti2O7:Eu3+ phosphors. <i>Journal of Materials Research</i> , 2006 , 21, 2232-2240	2.5	11

(2003-2006)

26	Photoluminescent properties of solgel derived (La, Gd)MgB5O10:Ce3+/Tb3+ nanocrystalline thin films. <i>Optical Materials</i> , 2006 , 28, 913-918	3.3	30
25	Solgel growth of Gd2MoO6:Eu3+ nanocrystalline layers on SiO2 spheres (SiO2@Gd2MoO6:Eu3+) and their luminescent properties. <i>Surface Science</i> , 2006 , 600, 3321-3326	1.8	26
24	Host-Sensitized Luminescence of Dy[sup 3+] in Nanocrystalline EGa[sub 2]O[sub 3] Prepared by a Pechini-Type Sol-Gel Process. <i>Journal of the Electrochemical Society</i> , 2005 , 152, H25	3.9	98
23	Photoluminescence of wet chemical process-derived (Y, Gd) BO3: Eu3+/Tb3+ thin film phosphors. Journal of Luminescence, 2005 , 114, 299-306	3.8	37
22	Growth and optical properties of nanocrystalline Gd3Ga5O12:Ln powders and thin films via Pechini solgel process. <i>Journal of Crystal Growth</i> , 2005 , 284, 262-269	1.6	33
21	Spin-Coating Preparation of Highly Ordered Photoluminescent Films of Layered PbI2-Aminoalkyloxysilane Perovskites. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 218-223	2.3	11
20	Solgel deposition and luminescence properties of lanthanide ion-doped Y2(1-x)Gd2xSiWO8 (0 phosphor films. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 80, 1547-1552	2.6	8
19	Self-organization and luminescent properties of nanostructured europium (III)Block copolymer complex thin films. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2005 , 43, 2181-2189	2.6	26
18	Luminescence properties of R2MoO6:Eu3+ (R = Gd, Y, La) phosphors prepared by Pechini sol-gel process. <i>Journal of Materials Research</i> , 2005 , 20, 2676-2681	2.5	43
17	Fabrication, patterning and luminescence properties of X2N2SiO5:A (A=Eu3+, Tb3+, Ce3+) phosphor films via solgel soft lithography. <i>Solid State Sciences</i> , 2004 , 6, 349-355	3.4	31
16	Fabrication and luminescent properties of rare earths-doped Gd2(WO4)3 thin film phosphors by Pechini solgel process. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 2237-2241	3.3	63
15	Preparation and luminescence properties of in situ formed lanthanide complexes covalently grafted to a silica network. <i>New Journal of Chemistry</i> , 2004 , 28, 1137	3.6	36
14	Effects R3+on the photoluminescent properties of Ca2R8(SiO4)6O2:A (R = Y,La,Gd;A = Eu3+,Tb3+) phosphor films prepared by the solgel process. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 2745-275	5 ^{1.8}	16
13	Luminescence properties of RP1⊠VxO4: A (R=Y, Gd, La; A=Sm3+, Er3+ x=0, 0.5, 1) thin films prepared by Pechini sol⊡el process. <i>Thin Solid Films</i> , 2003 , 444, 245-253	2.2	46
12	Patterning and luminescent properties of nanocrystalline Y2O3:Eu3+ phosphor films by solgel soft lithography. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 100, 124-131	3.1	76
11	Preparation, patterning and luminescent properties of nanocrystalline Gd2O3:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via Pechini solgel soft lithography. <i>Optical Materials</i> , 2003 , 23, 547-558	3.3	131
10	Preparation and Characterization of a Novel Layered Perovskite-Type Organic/Inorganic Hybrid Material Containing Silica Networks. <i>Chemistry of Materials</i> , 2003 , 15, 4705-4708	9.6	32
9	Luminescent properties of rare-earth-doped CaWO4phosphor films prepared by the Pechini solgel process. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, 5157-5169	1.8	43

8	Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. <i>Polymers for Advanced Technologies</i> , 2001 , 12, 285-292	3.2	176
7	Solgel deposition of calcium silicate red-emitting luminescent films doped with Eu3+. <i>Journal of Materials Chemistry</i> , 2001 , 11, 3382-3386		40
6	How to Obtain Anti-Thermal-Quenching Inorganic Luminescent Materials for Light-Emitting Diode Applications. <i>Advanced Optical Materials</i> ,2102287	8.1	7
5	Understanding Structure B unction Relationships of Nanoadjuvants for Enhanced Cancer Vaccine Efficacy. <i>Advanced Functional Materials</i> ,2111670	15.6	3
4	A [Ilosed-Loop] Therapeutic Strategy Based on Mutually Reinforced Ferroptosis and Immunotherapy. <i>Advanced Functional Materials</i> ,2111784	15.6	15
3	Progress in Light-Responsive Lanthanide Nanoparticles toward Deep Tumor Theranostics. <i>Advanced Functional Materials</i> ,2104325	15.6	11
2	Preparation of the highly dense ceramicthetal fuel particle with fine-grained tungsten layer by chemical vapor deposition for the application in nuclear thermal propulsion. <i>Tungsten</i> ,1	4.6	О
1	Size-Controllable Metal Chelates as Both Light Scattering Centers and Electron Collection Layer for High-Performance Polymer Solar Cells. <i>CCS Chemistry</i> ,37-49	7.2	6