## Takuya Suga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5997800/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Direct and Unified Access to Carbon Radicals from Aliphatic Alcohols by Costâ€Efficient<br>Titaniumâ€Mediated Homolytic Câ`'OH Bond Cleavage. Angewandte Chemie - International Edition, 2022, 61,                                                               | 13.8 | 24        |
| 2  | Highly ( <i>E</i> )-Selective Trisubstituted Alkene Synthesis by Low-Valent Titanium-Mediated Homolytic<br>Cleavage of Alcohol C–O Bond. Journal of Organic Chemistry, 2022, 87, 7487-7493.                                                                      | 3.2  | 4         |
| 3  | Conjugate Addition of Acetal-Derived Benzyl Radicals Generated from Low-Valent Titanium-Mediated<br>C–O Bond Cleavage. Bulletin of the Chemical Society of Japan, 2021, 94, 1258-1260.                                                                           | 3.2  | 5         |
| 4  | One‣hot Radical Cross Coupling Between Benzyl Alcohols and Alkenyl Halides Using Ni/Ti/Mn System.<br>Advanced Synthesis and Catalysis, 2020, 362, 5622-5626.                                                                                                     | 4.3  | 11        |
| 5  | Synthesis of 3,6-Dihydro-2 <i>H</i> -1,2-oxazines via Dimethylsulfoxonium Methylide Addition to<br>α,β-Unsaturated Nitrones. Journal of Organic Chemistry, 2020, 85, 11258-11264.                                                                                | 3.2  | 8         |
| 6  | Rh atalyzed Direct Carboxylation of Alkenyl Câ^'H Bonds of Alkenylpyrazoles. Chemistry - an Asian<br>Journal, 2020, 15, 1941-1944.                                                                                                                               | 3.3  | 15        |
| 7  | Enantioselective Dehydroxyhydrogenation of 3-Indolylmethanols by the Combined Use of<br>Benzothiazoline and Chiral Phosphoric Acid: Construction of a Tertiary Carbon Center. Organic<br>Letters, 2020, 22, 2225-2229.                                           | 4.6  | 17        |
| 8  | Nickel-Catalyzed Cross-Electrophile Coupling between Benzyl Alcohols and Aryl Halides Assisted by<br>Titanium Co-reductant. Organic Letters, 2018, 20, 7846-7850.                                                                                                | 4.6  | 67        |
| 9  | Low-Valent Titanium-Mediated Radical Conjugate Addition Using Benzyl Alcohols as Benzyl Radical<br>Sources. Organic Letters, 2018, 20, 5389-5392.                                                                                                                | 4.6  | 53        |
| 10 | Synthesis of Sterically Fixed Phytochrome Chromophore Derivatives Bearing a 15E-Fixed or 15E-Anti-Fixed CD-Ring Component. Journal of Organic Chemistry, 2018, 83, 10743-10748.                                                                                  | 3.2  | 1         |
| 11 | Formal Total Synthesis of Manzacidin C Based on Asymmetric 1,3-Dipolar Cycloaddition of Azomethine<br>Imines. Journal of Organic Chemistry, 2017, 82, 1969-1976.                                                                                                 | 3.2  | 21        |
| 12 | Niobium( <scp>v</scp> )-catalyzed defluorinative triallylation of α,α,α-trifluorotoluene derivatives by<br>triple C–F bond activation. Organic and Biomolecular Chemistry, 2017, 15, 1767-1770.                                                                  | 2.8  | 22        |
| 13 | Palladium-catalyzed C–H Alkenylation of <i>C</i> -Aryl Nitrones. Chemistry Letters, 2017, 46, 45-47.                                                                                                                                                             | 1.3  | 8         |
| 14 | Mechanistic study of the rhodium-catalyzed carboxylation of simple aromatic compounds with carbon dioxide. Chemical Science, 2017, 8, 1454-1462.                                                                                                                 | 7.4  | 64        |
| 15 | Versatile and highly efficient oxidative C(sp <sup>3</sup> )–H bond functionalization of<br>tetrahydroisoquinoline promoted by bifunctional diethyl azodicarboxylate (DEAD): scope and<br>mechanistic insights. Organic Chemistry Frontiers, 2016, 3, 1259-1264. | 4.5  | 25        |
| 16 | Direct carboxylation of simple arenes with CO <sub>2</sub> through a rhodium-catalyzed C–H bond activation. Chemical Communications, 2014, 50, 14360-14363.                                                                                                      | 4.1  | 132       |
| 17 | Construction of Cyclohepta[b]indoles via Platinum-Catalyzed Intermolecular Formal<br>[4+3]-Cycloaddition Reaction of α,β-Unsaturated Carbene Complex Intermediates with Siloxydienes.<br>Synlett, 2013, 24, 1364-1370.                                           | 1.8  | 28        |
| 18 | Platinum(II)-Catalyzed Generation and [3+2] Cycloaddition Reaction of α,β-Unsaturated Carbene Complex<br>Intermediates for the Preparation of Polycyclic Compounds. Journal of the American Chemical<br>Society, 2011, 133, 689-691.                             | 13.7 | 102       |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Direct and Unified Access to Carbon Radicals from AliphaticÂAlcohols by Costâ€Efficient<br>Titaniumâ€Mediated Homolytic C–OH BondÂCleavage. Angewandte Chemie, 0, , . | 2.0 | 4         |