Mårten Wikström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5997556/publications.pdf

Version: 2024-02-01

149 papers 12,001 citations

20817 60 h-index 105 g-index

155 all docs

155 docs citations

155 times ranked 4478 citing authors

#	Article	IF	CITATIONS
1	Oxygen activation and the conservation of energy in cell respiration. Nature, 1992, 356, 301-309.	27.8	1,194
2	Proton-Coupled Electron Transfer in Cytochrome Oxidase. Chemical Reviews, 2010, 110, 7062-7081.	47.7	466
3	The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nature Structural Biology, 2000, 7, 910-917.	9.7	354
4	Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping. Nature, 1989, 338, 776-778.	27.8	312
5	Oxygen Activation and Energy Conservation by Cytochrome <i>c</i> Oxidase. Chemical Reviews, 2018, 118, 2469-2490.	47.7	294
6	Proton-pumping cytochrome c oxidase. Biochimica Et Biophysica Acta - Reviews on Bioenergetics, 1979, 549, 177-222.	0.2	276
7	Water-gated mechanism of proton translocation by cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1604, 61-65.	1.0	258
8	Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature, 2006, 440, 829-832.	27.8	256
9	Proton translocation by cytochrome c oxidase. Nature, 1999, 400, 480-483.	27.8	243
10	New Perspectives on Proton Pumping in Cellular Respiration. Chemical Reviews, 2015, 115, 2196-2221.	47.7	238
11	Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Letters, 1984, 169, 300-304.	2.8	229
12	Cytochromeo(bo) is a proton pump in Paracoccus denitrificans and Escherichia coli. FEBS Letters, 1989, 249, 163-167.	2.8	212
13	Exploring the proton pump mechanism of cytochrome c oxidase in real time. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2685-2690.	7.1	205
14	Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity. Biochemistry, 1993, 32, 10923-10928.	2.5	203
15	The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 529-533.	7.1	200
16	Cytochrome c oxidase: 25 years of the elusive proton pump. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1655, 241-247.	1.0	191
17	Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1200-1214.	1.0	155
18	Proton translocation by bacteriorhodopsin and heme-copper oxidases. Current Opinion in Structural Biology, 1998, 8, 480-488.	5.7	153

#	Article	IF	CITATIONS
19	Real-time electron transfer in respiratory complex I. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3763-3767.	7.1	144
20	The histidine cycle: A new model for proton translocation in the respiratory heme-copper oxidases. Journal of Bioenergetics and Biomembranes, 1994, 26, 599-608.	2.3	131
21	Role of thePRIntermediate in the Reaction of CytochromecOxidase with O2â€. Biochemistry, 2001, 40, 6882-6892.	2.5	128
22	Glutamic acid 242 is a valve in the proton pump of cytochrome $\langle i \rangle c \langle i \rangle$ oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6255-6259.	7.1	125
23	Redox-induced activation of the proton pump in the respiratory complex I. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11571-11576.	7.1	122
24	Fourier Transform Infrared Evidence for Connectivity between CuB and Glutamic Acid 286 in Cytochrome bo3 from Escherichia coli. Biochemistry, 1997, 36, 13195-13200.	2.5	121
25	Assignment and Charge Translocation Stoichiometries of the Major Electrogenic Phases in the Reaction of Cytochrome c Oxidase with Dioxygen. Biochemistry, 1999, 38, 2697-2706.	2.5	120
26	The role of the D- and K-pathways of proton transfer in the function of the haem–copper oxidases. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1459, 514-520.	1.0	117
27	Modeling Cytochrome Oxidase:Â A Quantum Chemical Study of the Oâ^'O Bond Cleavage Mechanism. Journal of the American Chemical Society, 2000, 122, 12848-12858.	13.7	112
28	Mechanism of proton translocation by the respiratory oxidases. The histidine cycle. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 106-111.	1.0	111
29	Proton transfer in cytochrome bo3 ubiquinol oxidase of Escherichia coli: Second-site mutations in subunit I that restore proton pumping in the mutant Asp135.fwdarw.Asn. Biochemistry, 1995, 34, 4428-4433.	2.5	110
30	Respiration-Linked H+ Translocation in Mitochondria: Stoichiometry and Mechanism. Current Topics in Bioenergetics, 1980, 10, 51-101.	2.7	110
31	Observation and Assignment of Peroxy and Ferryl Intermediates in the Reduction of Dioxygen to Water by CytochromecOxidaseâ€. Biochemistry, 1996, 35, 12235-12240.	2.5	108
32	Kinetic trapping of oxygen in cell respiration. Nature, 1996, 380, 268-270.	27.8	108
33	<i>Bacillus subtilis</i> expresses two kinds of haemâ€Aâ€containing terminal oxidases. FEBS Journal, 1991, 197, 699-705.	0.2	104
34	Structure of CuB in the Binuclear Heme-Copper Center of the Cytochrome aa3-Type Quinol Oxidase from Bacillus subtilis: An ENDOR and EXAFS Study. Biochemistry, 1995, 34, 10245-10255.	2.5	103
35	Channelling of dioxygen into the respiratory enzyme. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1275, 1-4.	1.0	103
36	Metal-Bridging Mechanism for Oâ^'O Bond Cleavage in Cytochrome c Oxidase. Inorganic Chemistry, 2003, 42, 5231-5243.	4.0	99

#	Article	IF	Citations
37	Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4431-4436.	7.1	98
38	Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6988-6993.	7.1	94
39	Architecture of bacterial respiratory chains. Nature Reviews Microbiology, 2021, 19, 319-330.	28.6	92
40	Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1166-1172.	1.0	90
41	Gating of proton and water transfer in the respiratory enzyme cytochrome c oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10478-10481.	7.1	86
42	Activated polymorphonuclear leucocytes consume vitamin C. FEBS Letters, 1984, 178, 25-30.	2.8	85
43	The cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 421-434.	1.0	84
44	Redox-coupled quinone dynamics in the respiratory complex I. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8413-E8420.	7.1	84
45	The proton donor for OO bond scission by cytochrome $\langle i \rangle c \langle i \rangle$ oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10733-10737.	7.1	81
46	The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 80-84.	1.0	81
47	Pumping of protons from the mitochondrial matrix by cytochrome oxidase. Nature, 1984, 308, 558-560.	27.8	80
48	Cytochrome c Oxidase is a proton pump. FEBS Letters, 1978, 91, 8-14.	2.8	75
49	Active site intermediates in the reduction of O2 by cytochrome oxidase, and their derivatives. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 468-475.	1.0	74
50	Intramolecular electron transfer in cytochrome c oxidase: a cascade of equilibria. Biochemistry, 1992, 31, 11860-11863.	2.5	73
51	Redox Titration of All Electron Carriers of Cytochrome c Oxidase by Fourier Transform Infrared Spectroscopy. Biochemistry, 2006, 45, 5641-5649.	2.5	73
52	Mechanism of proton translocation by cytochrome c oxidase: a new four-stroke histidine cycle11Amino acid residues are numbered according to the subunit I structure of cytochrome aa3 from bovine heart mitochondria Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1458, 188-198.	1.0	72
53	Proton Translocation by CytochromecOxidase Can Take Place without the Conserved Glutamic Acid in Subunit lâ€. Biochemistry, 2000, 39, 7863-7867.	2.5	69
54	Kinetic gating of the proton pump in cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13707-13712.	7.1	69

#	Article	IF	CITATIONS
55	Time-resolved single-turnover of ba3 oxidase from Thermus thermophilus. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1383-1392.	1.0	67
56	Structure and dynamics of a proton shuttle in cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 255-260.	1.0	66
57	Translocation of electrical charge during a single turnover of cytochrome-c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1318, 6-10.	1.0	65
58	The Spin Distribution in Low-Spin Iron Porphyrins. Journal of the American Chemical Society, 2002, 124, 11771-11780.	13.7	64
59	The semiquinone cycle. A hypothesis of electron transfer and proton translocation in cytochromebc-type complexes. Journal of Bioenergetics and Biomembranes, 1986, 18, 181-193.	2.3	61
60	Analysis of the Pathogenic Human Mitochondrial Mutation ND1/3460, and Mutations of Strictly Conserved Residues in Its Vicinity, Using the BacteriumParacoccus denitrificansâ€. Biochemistry, 1998, 37, 11792-11796.	2.5	61
61	Towards the mechanism of proton pumping by the haem-copper oxidases. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1047-1051.	1.0	61
62	Coordination of CuB in Reduced and CO-Liganded States of Cytochrome bo3 from Escherichia coli. Is Chloride Ion a Cofactor?. Biochemistry, 1999, 38, 7185-7194.	2.5	60
63	Charge Translocation Coupled to Electron Injection into Oxidized CytochromecOxidase fromParacoccus denitrificansâ€. Biochemistry, 2001, 40, 7077-7083.	2.5	60
64	Multiscale simulations reveal key features of the proton-pumping mechanism in cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7420-7425.	7.1	60
65	Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2040-2045.	7.1	59
66	Kinetic models of redox-coupled proton pumping. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2169-2174.	7.1	57
67	The oxidation of exogenous cytochrome c by mitochondria. FEBS Letters, 1985, 183, 293-298.	2.8	56
68	Computational study of the activated O _H state in the catalytic mechanism of cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16844-16849.	7.1	56
69	The Protonation State of the Cross-linked Tyrosine during the Catalytic Cycle of Cytochrome c Oxidase. Journal of Biological Chemistry, 2008, 283, 34907-34912.	3.4	55
70	Identification of a histidine-tyrosine cross-link in the active site of the cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16135-16140.	7.1	52
71	An alternative cytochrome oxidase of Paracoccus denitrificans functions as a proton pump. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1186, 100-106.	1.0	51
72	Ultrafast haem–haem electron transfer in cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1506, 143-146.	1.0	50

#	Article	IF	CITATIONS
73	Change in electron and spin density upon electron transfer to haem. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1553, 183-187.	1.0	49
74	The chemistry of the CuB site in cytochrome c oxidase and the importance of its unique His–Tyr bond. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 221-233.	1.0	47
75	Mechanism and energetics by which glutamic acid 242 prevents leaks in cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1205-1214.	1.0	47
76	Proton pumping by cytochrome c oxidase – A 40†year anniversary. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 692-698.	1.0	46
77	Protonic sidedness of the binuclear iron-copper centre in cytochrome oxidase. FEBS Letters, 1988, 231, 247-252.	2.8	44
78	Perturbation of the CuA Site in Cytochrome-c Oxidase of Paracoccus denitrificans by Replacement of Met227 with Isoleucine. FEBS Journal, 1995, 234, 686-693.	0.2	44
79	The Calcium Binding Site in Cytochromeaa3fromParacoccus denitrificansâ€. Biochemistry, 1999, 38, 10670-10677.	2.5	44
80	Binding of O2and Its Reduction Are Both Retarded by Replacement of Valine 279 by Isoleucine in CytochromecOxidase fromParacoccus denitrificansâ€. Biochemistry, 2000, 39, 6365-6372.	2.5	44
81	Elementary steps of proton translocation in the catalytic cycle of cytochrome oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 401-407.	1.0	44
82	An Elementary Reaction Step of the Proton Pump Is Revealed by Mutation of Tryptophan-164 to Phenylalanine in CytochromecOxidase fromParacoccus denitrificansâ€. Biochemistry, 2005, 44, 16502-16512.	2.5	43
83	Initiation of the proton pump of cytochrome $\langle i \rangle c \langle j \rangle$ oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18469-18474.	7.1	42
84	Glutamate-89 in Subunit II of Cytochromebo3fromEscherichia colils Required for the Function of the Hemeâ~Copper Oxidaseâ€. Biochemistry, 1999, 38, 15150-15156.	2.5	41
85	Structural and Chemical Changes of the PMIntermediate ofParacoccus denitrificansCytochromecOxidase Revealed by IR Spectroscopy with Labeled Tyrosines and Histidineâ€. Biochemistry, 2006, 45, 10873-10885.	2.5	41
86	On the stoichiometry and thermodynamics of proton-pumping cytochrome c oxidase in mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1979, 548, 1-15.	1.0	40
87	Evidence for a mobile semiquinone in the redox cycle of the mammalian cytochrome bc 1 complex. FEBS Letters, 1986, 194, 176-182.	2.8	40
88	Proton translocation by cytochrome c oxidase in different phases of the catalytic cycle. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1555, 128-132.	1.0	40
89	Sequence Analysis of the cbb3 Oxidases and an Atomic Model for the Rhodobacter sphaeroides Enzyme. Biochemistry, 2006, 45, 5754-5765.	2,5	40
90	Nanosecond electron tunneling between the hemes in cytochrome <i>bo</i> ₃ . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20811-20814.	7.1	40

#	Article	IF	Citations
91	The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 999-1003.	1.0	40
92	Understanding the essential proton-pumping kinetic gates and decoupling mutations in cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5924-5929.	7.1	40
93	Intramolecular electron transfer in cytochrome o of Escherichia coli: events following the photolysis of fully and partially reduced carbon monoxide-bound forms of the bo3 and oo3 enzymes. Biochemistry, 1993, 32, 11413-11418.	2.5	39
94	A combined quantum chemical and crystallographic study on the oxidized binuclear center of cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 769-778.	1.0	39
95	Interaction of Ca2+ and H+ with heme A in cytochrome oxidase. Journal of Bioenergetics and Biomembranes, 1980, 12, 325-338.	2.3	38
96	Critical evaluation of the proton-translocating property of cytochrome oxidase in rat liver mitochondria. FEBS Letters, 1982, 144, 183-189.	2.8	38
97	Active Site of Cytochrome cbb3. Journal of Biological Chemistry, 2009, 284, 11301-11308.	3.4	37
98	The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1111-1115.	1.0	37
99	The role of mitochondria in uterine contractions. FEBS Letters, 1975, 56, 120-123.	2.8	36
100	Heme-copper oxidases with modified D- and K-pathways are yet efficient proton pumps. FEBS Letters, 2001, 497, 159-164.	2.8	36
101	The number of subunits in bovine cytochrome c oxidase. FEBS Letters, 1979, 101, 295-300.	2.8	35
102	ATR-FTIR Spectroscopy and Isotope Labeling of the PM Intermediate of Paracoccus denitrificans Cytochrome c Oxidase. Biochemistry, 2004, 43, 14370-14378.	2.5	33
103	Mechanistic stoichiometry of proton translocation by cytochrome <i> cbb ₃ </i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7286-7291.	7.1	33
104	The D-channel of cytochrome oxidase: An alternative view. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1273-1278.	1.0	32
105	Dynamics of the glutamic acid 242 side chain in cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1102-1106.	1.0	31
106	Oxidoreduction properties of bound ubiquinone in Complex I from Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 246-250.	1.0	31
107	On the mechanism of proton translocation by respiratory enzyme. Journal of Bioenergetics and Biomembranes, 1998, 30, 139-145.	2.3	30
108	Electron and Proton Transfer in the Arginine-54-Methionine Mutant of CytochromecOxidase fromParacoccus denitrificansâ€. Biochemistry, 2001, 40, 5269-5274.	2. 5	28

#	Article	IF	Citations
109	Interheme electron tunneling in cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21470-21475.	7.1	26
110	A structural and functional perspective on the evolution of the heme–copper oxidases. FEBS Letters, 2014, 588, 3787-3792.	2.8	26
111	Catalytic intermediates. Nature, 1990, 348, 16-17.	27.8	25
112	Role of subunit III and its lipids in the molecular mechanism of cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 690-697.	1.0	24
113	Molecular simulation and modeling of complex I. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 915-921.	1.0	24
114	Thermodynamic efficiency, reversibility, and degree of coupling in energy conservation by the mitochondrial respiratory chain. Communications Biology, 2020, 3, 451.	4.4	24
115	Proton-Coupled Electron Equilibrium in Soluble and Membrane-Bound CytochromecOxidase fromParacoccus denitrificansâ€. Biochemistry, 2006, 45, 4000-4006.	2.5	23
116	The H+ $/$ O ratio of proton translocation linked to the oxidation of succinate by mitochondria. FEBS Letters, 1984, 178, 187-192.	2.8	22
117	Mutations in subunit 6 of the F1F0-ATP synthase cause two entirely different diseases. FEBS Letters, 1997, 412, 351-354.	2.8	22
118	Proton linkage of cytochrome a oxidoreduction in carbon monoxide-treated cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1412, 184-189.	1.0	22
119	Prevention of leak in the proton pump of cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 890-892.	1.0	22
120	Protolytic Reactions on Reduction of Cytochrome c Oxidase Studied by ATR-FTIR Spectroscopy. Biochemistry, 2007, 46, 4177-4183.	2.5	21
121	The K-pathway revisited: A computational study on cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1117-1121.	1.0	20
122	Structure of bovine cytochrome oxidase. FEBS Letters, 1980, 114, 35-38.	2.8	18
123	Proton translocation by the respiratory haem-copper oxidases. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 185-192.	1.0	18
124	A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nature Communications, 2020, 11, 322.	12.8	17
125	Ascorbic acid against reperfusion injury in human renal transplantation. Transplant International, 2003, 16, 578-583.	1.6	16
126	Dynamic water networks in cytochrome cbb3 oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 726-734.	1.0	16

#	Article	IF	Citations
127	Interaction between the formyl group of heme a and arginine 54 in cytochrome aa3 from Paracoccus denitrificans. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1456, 1-4.	1.0	15
128	Stabilization of the peroxy intermediate in the oxygen splitting reaction of cytochrome cbb3. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 813-818.	1.0	15
129	Monomerization of cytochrome oxidase may be essential for the removal of subunit III. FEBS Journal, 1988, 176, 125-129.	0.2	14
130	Redox-coupled proton transfer in the active site of cytochrome cbb3. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1512-1520.	1.0	14
131	Time-resolved generation of membrane potential by ba cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and OH states. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 915-926.	1.0	13
132	The respiration-driven active sodium transport system in E. colidoes not function with lithium. FEBS Letters, 1996, 388, 217-218.	2.8	12
133	The fifth electron in the fully reduced caa3 from Thermus thermophilus is competent in proton pumping. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1-9.	1.0	12
134	Nitric oxide is a potent inhibitor of the <i>cbb</i> ₃ â€type hemeâ€copper oxidases. FEBS Letters, 2015, 589, 1214-1218.	2.8	12
135	Modeling the Active-Site Structure of the <i>cbb</i> ₃ -Type Oxidase from Rhodobacter sphaeroides. Biochemistry, 2008, 47, 4221-4227.	2.5	10
136	The Na+and K+transport deficiency of anE. colimutant lacking the NhaA and NhaB proteins is apparent and caused by impaired osmoregulation. FEBS Letters, 1998, 439, 271-274.	2.8	9
137	Modulation of the active site conformation by site-directed mutagenesis in cytochrome c oxidase from Paracoccus denitrificans. Journal of Inorganic Biochemistry, 2010, 104, 318-323.	3.5	9
138	Mechanism and Stoicheiometry of Redox-Linked Proton Translocation in Mitochondria. Biochemical Society Transactions, 1979, 7, 880-887.	3.4	8
139	Determination of the stoichiometry of redox-linked proton translocation from the kinetics of pulse experiments. FEBS Letters, 1986, 201, 198-204.	2.8	7
140	Mechanistic Comparisons Between Photosystem II and Cytochrome c Oxidase., 2005,, 697-713.		5
141	Specific inhibition of proton pumping by the T315V mutation in the K channel of cytochrome ba from Thermus thermophilus. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148450.	1.0	5
142	A novel antiporter activity catalyzing sodium and potassium transport from right-side-out vesicles of E. coli. FEBS Letters, 1995, 363, 46-48.	2.8	4
143	Cytochrome oxidase: structure and mechanism. Foreword. Journal of Bioenergetics and Biomembranes, 1998, 30, 3-5.	2.3	2
144	The Respiratory Enzyme as An Electrochemical Energy Transducer. , 2008, , 25-35.		2

#	Article	lF	CITATIONS
145	Cytochrome <i>c</i> Oxidase â€" Remaining Questions About the Catalytic Mechanism. , 2019, , 135-145.		2
146	1P176 ATR-FTIR Characterisation of the Ferryl Intermediates of Cytochrome c Oxidase(5. Heme) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50 7
147	How I became a biochemist. IUBMB Life, 2008, 60, 414-417.	3.4	O
148	Michael I. Verkhovsky (1953–2011). Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 267-268.	1.0	0
149	The Role of the H-Channel in Cytochrome c Oxidase: A Commentary. , 2017, , 55-63.		O