Walter Gassmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5997360/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014, 19, 5-9.	4.3	581
2	The FRD3-Mediated Efflux of Citrate into the Root Vasculature Is Necessary for Efficient Iron Translocation. Plant Physiology, 2007, 144, 197-205.	2.3	525
3	The <i>Arabidopsis</i> Nitrate Transporter NRT1.8 Functions in Nitrate Removal from the Xylem Sap and Mediates Cadmium Tolerance Â. Plant Cell, 2010, 22, 1633-1646.	3.1	413
4	The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant Journal, 1999, 20, 265-277.	2.8	348
5	A gene family of silicon transporters. Nature, 1997, 385, 688-689.	13.7	319
6	Chloroplastâ€generated reactive oxygen species are involved in hypersensitive responseâ€like cell death mediated by a mitogenâ€activated protein kinase cascade. Plant Journal, 2007, 51, 941-954.	2.8	281
7	Pathogen Effectors Target <i>Arabidopsis</i> EDS1 and Alter Its Interactions with Immune Regulators. Science, 2011, 334, 1405-1408.	6.0	268
8	Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant Journal, 1996, 10, 869-882.	2.8	240
9	The Arabidopsis AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds. Plant Physiology, 2008, 146, 323-324.	2.3	225
10	Activation of a Stress-Responsive Mitogen-Activated Protein Kinase Cascade Induces the Biosynthesis of Ethylene in Plants. Plant Cell, 2003, 15, 2707-2718.	3.1	200
11	Aluminum Rapidly Depolymerizes Cortical Microtubules and Depolarizes the Plasma Membrane: Evidence that these Responses are Mediated by a Glutamate Receptor. Plant and Cell Physiology, 2003, 44, 667-675.	1.5	177
12	The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis. Annual Review of Plant Biology, 2017, 68, 535-561.	8.6	157
13	RPS4-Mediated Disease Resistance Requires the Combined Presence of RPS4 Transcripts with Full-Length and Truncated Open Reading Frames. Plant Cell, 2003, 15, 2333-2342.	3.1	140
14	Enhancement of Na+ Uptake Currents, Time-Dependent Inward-Rectifying K+ Channel Currents, and K+Channel Transcripts by K+ Starvation in Wheat Root Cells. Plant Physiology, 2000, 122, 1387-1398.	2.3	136
15	Rapid Up-Regulation of HKT1, a High-Affinity Potassium Transporter Gene, in Roots of Barley and Wheat following Withdrawal of Potassium. Plant Physiology, 1998, 118, 651-659.	2.3	131
16	Alternative Splicing and mRNA Levels of the Disease Resistance Gene <i>RPS4</i> Are Induced during Defense Responses. Plant Physiology, 2007, 145, 1577-1587.	2.3	128
17	Genetic Selection of Mutations in the High Affinity K+ Transporter HKT1 That Define Functions of a Loop Site for Reduced Na+ Permeability and Increased Na+Tolerance. Journal of Biological Chemistry, 1999, 274, 6839-6847.	1.6	113
18	Transport of Boron by the <i>tassel-less1 </i> Aquaporin Is Critical for Vegetative and Reproductive Development in Maize Â. Plant Cell, 2014, 26, 2978-2995.	3.1	113

WALTER GASSMANN

#	Article	IF	CITATIONS
19	The Arabidopsis Resistance-Like Gene SNC1 Is Activated by Mutations in SRFR1 and Contributes to Resistance to the Bacterial Effector AvrRps4. PLoS Pathogens, 2010, 6, e1001172.	2.1	107
20	Resistance to the <i>Pseudomonas syringae</i> Effector HopA1 Is Governed by the TIR-NBS-LRR Protein RPS6 and Is Enhanced by Mutations in <i>SRFR1</i> Â Â Â. Plant Physiology, 2009, 150, 1723-1732.	2.3	105
21	Identification of Strong Modifications in Cation Selectivity in an Arabidopsis Inward Rectifying Potassium Channel by Mutant Selection in Yeast. Journal of Biological Chemistry, 1995, 270, 24276-24281.	1.6	102
22	Oxidative Damage to DNA Constituents by Iron-mediated Fenton Reactions. Journal of Biological Chemistry, 1996, 271, 21177-21186.	1.6	100
23	Molecular Evolution of Virulence in Natural Field Strains of Xanthomonas campestris pv. vesicatoria. Journal of Bacteriology, 2000, 182, 7053-7059.	1.0	100
24	The <scp>A</scp> rabidopsis immune adaptor <scp>SRFR</scp> 1 interacts with <scp>TCP</scp> transcription factors that redundantly contribute to effectorâ€ŧriggered immunity. Plant Journal, 2014, 78, 978-989.	2.8	98
25	Natural Variation in the Arabidopsis Response to the Avirulence Gene hopPsyA Uncouples the Hypersensitive Response from Disease Resistance. Molecular Plant-Microbe Interactions, 2005, 18, 1054-1060.	1.4	90
26	Effector-Triggered Immunity Signaling: From Gene-for-Gene Pathways to Protein-Protein Interaction Networks. Molecular Plant-Microbe Interactions, 2012, 25, 862-868.	1.4	90
27	A Constitutive Shade-Avoidance Mutant Implicates TIR-NBS-LRR Proteins in Arabidopsis Photomorphogenic Development. Plant Cell, 2006, 18, 2919-2928.	3.1	89
28	Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta, 2006, 223, 291-305.	1.6	87
29	High-Throughput RNA Sequencing of Pseudomonas-Infected Arabidopsis Reveals Hidden Transcriptome Complexity and Novel Splice Variants. PLoS ONE, 2013, 8, e74183.	1.1	82
30	Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Critical Reviews in Biotechnology, 2021, 41, 715-730.	5.1	73
31	ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities. Biochemical Journal, 2006, 393, 267-275.	1.7	71
32	<i>SRFR1</i> , a suppressor of effectorâ€triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors. Plant Journal, 2009, 57, 109-119.	2.8	64
33	Natural Variation in Small Molecule–Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1- and PAD4-Complexed R Protein VICTR in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 24, 5177-5192.	3.1	64
34	Members of the NPF3 Transporter Subfamily Encode Pathogen-Inducible Nitrate/Nitrite Transporters in Grapevine and Arabidopsis. Plant and Cell Physiology, 2014, 55, 162-170.	1.5	62
35	Arabidopsis OPT6 is an Oligopeptide Transporter with Exceptionally Broad Substrate Specificity. Plant and Cell Physiology, 2009, 50, 1923-1932.	1.5	60
36	CRISPR/Cas9-Based Gene Editing Using Egg Cell-Specific Promoters in Arabidopsis and Soybean. Frontiers in Plant Science, 2020, 11, 800.	1.7	51

Walter Gassmann

#	Article	IF	CITATIONS
37	Alternative Splicing in Plant Defense. Current Topics in Microbiology and Immunology, 2008, 326, 219-233.	0.7	50
38	TCP Transcription Factors Interact With NPR1 and Contribute Redundantly to Systemic Acquired Resistance. Frontiers in Plant Science, 2018, 9, 1153.	1.7	46
39	Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves. PLoS Genetics, 2017, 13, e1007132.	1.5	44
40	A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant. Planta, 2010, 231, 1037-1047.	1.6	43
41	Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew. Plant Molecular Biology, 2014, 86, 381-393.	2.0	42
42	Express yourself: Transcriptional regulation of plant innate immunity. Seminars in Cell and Developmental Biology, 2016, 56, 150-162.	2.3	37
43	Electrophysiological Characterization of the Arabidopsis avrRpt2-Specific Hypersensitive Response in the Absence of Other Bacterial Signals. Plant Physiology, 2005, 138, 1009-1017.	2.3	35
44	New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity. Frontiers in Plant Science, 2013, 4, 364.	1.7	35
45	Arabidopsis TCP Transcription Factors Interact with the SUMO Conjugating Machinery in Nuclear Foci. Frontiers in Plant Science, 2017, 8, 2043.	1.7	31
46	Copper uptake mechanism of Arabidopsis thaliana high-affinity COPT transporters. Protoplasma, 2019, 256, 161-170.	1.0	31
47	Soybean TIP Gene Family Analysis and Characterization of GmTIP1;5 and GmTIP2;5 Water Transport Activity. Frontiers in Plant Science, 2016, 7, 1564.	1.7	30
48	Constant vigilance: plant functions guarded by resistance proteins. Plant Journal, 2018, 93, 637-650.	2.8	28
49	Two Arabidopsis srfr (suppressor of rps4â€RLD) mutants exhibit avrRps4 â€specific disease resistance independent of RPS4. Plant Journal, 2004, 40, 366-375.	2.8	26
50	The bacterial type III-secreted protein AvrRps4 is a bipartite effector. PLoS Pathogens, 2018, 14, e1006984.	2.1	23
51	Metal-ion-directed site-specificity of hydroxyl radical detection. Biochimica Et Biophysica Acta - General Subjects, 1992, 1116, 183-191.	1.1	20
52	Direct Regulation of the EFR-Dependent Immune Response by Arabidopsis TCP Transcription Factors. Molecular Plant-Microbe Interactions, 2019, 32, 540-549.	1.4	19
53	Regulation of defense gene expression by Arabidopsis <i>SRFR1</i> . Plant Signaling and Behavior, 2009, 4, 149-150.	1.2	15
54	Opposing functions of the plant TOPLESS gene family during SNC1-mediated autoimmunity. PLoS Genetics, 2021, 17, e1009026.	1.5	15

WALTER GASSMANN

#	Article	IF	CITATIONS
55	The <scp>A</scp> rabidopsis immune regulator <scp><i>SRFR</i></scp> <i>1</i> dampens defences against herbivory by <scp><i>S</i></scp> <i>podoptera exigua</i> and parasitism by <scp><i>H</i></scp> <i>eterodera schachtii</i> . Molecular Plant Pathology, 2016, 17, 588-600.	2.0	11
56	Pathogen-induced AdDjSKI of the wild peanut, Arachis diogoi, potentiates tolerance of multiple stresses in E. coli and tobacco. Plant Science, 2018, 272, 62-74.	1.7	11
57	Nuclear Localization of HopA1Pss61 Is Required for Effector-Triggered Immunity. Plants, 2021, 10, 888.	1.6	11
58	Physiological Roles of Inward-Rectifying K + Channels. Plant Cell, 1993, 5, 1491.	3.1	10
59	ACMES: fast multiple-genome searches for short repeat sequences with concurrent cross-species information retrieval. Nucleic Acids Research, 2004, 32, W649-W653.	6.5	10
60	Using Xenopus laevis Oocytes to Functionally Characterize Plant Transporters. Current Protocols in Plant Biology, 2019, 4, e20087.	2.8	10
61	Leaping into the Unknown World of Sporisorium scitamineum Candidate Effectors. Journal of Fungi (Basel, Switzerland), 2020, 6, 339.	1.5	7
62	Conserved Opposite Functions in Plant Resistance to Biotrophic and Necrotrophic Pathogens of the Immune Regulator SRFR1. International Journal of Molecular Sciences, 2021, 22, 6427.	1.8	6
63	Generating Transgenic Arabidopsis Plants for Functional Analysis of Pathogen Effectors and Corresponding R Proteins. Methods in Molecular Biology, 2019, 1991, 199-206.	0.4	3
64	The Conserved Arginine Required for AvrRps4 Processing Is Also Required for Recognition of Its N-Terminal Fragment in Lettuce. Molecular Plant-Microbe Interactions, 2021, 34, 270-278.	1.4	2
65	Quantifying Alternatively Spliced mRNA via Capillary Electrophoresis. Methods in Molecular Biology, 2011, 712, 69-77.	0.4	1
66	<scp>AvrRps4</scp> effector family processing and recognition in lettuce. Molecular Plant Pathology, 2022, 23, 1390-1398.	2.0	1
67	A Method for Investigating the Pseudomonas syringae-Arabidopsis thaliana Pathosystem Under Various Light Environments. Methods in Molecular Biology, 2019, 1991, 107-113.	0.4	0
68	Global SUMOylome Adjustments in Basal Defenses of Arabidopsis thaliana Involve Complex Interplay Between SMALL-UBIQUITIN LIKE MODIFIERs and the Negative Immune Regulator SUPPRESSOR OF rps4-RLD1. Frontiers in Cell and Developmental Biology, 2021, 9, 680760.	1.8	0