Hans-Joachim Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5997336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of strained silicon layers at Si-SiO2interfaces and clean Si surfaces by nonlinear optical spectroscopy. Physical Review Letters, 1993, 71, 1234-1237.	2.9	234
2	Magnetic particle detection by frequency mixing for immunoassay applications. Journal of Magnetism and Magnetic Materials, 2007, 311, 436-444.	1.0	139
3	CRP determination based on a novel magnetic biosensor. Biosensors and Bioelectronics, 2007, 22, 973-979.	5.3	132
4	Recent developments in SQUID NDE. Physica C: Superconductivity and Its Applications, 2002, 368, 70-79.	0.6	82
5	Magnetic biosensor for the detection of Yersinia pestis. Journal of Microbiological Methods, 2007, 68, 218-224.	0.7	72
6	Biosensing near the neutrality point of graphene. Science Advances, 2017, 3, e1701247.	4.7	68
7	Eddy current technique with high temperature SQUID for non-destructive evaluation of non-magnetic metallic structures. Cryogenics, 1996, 36, 83-86.	0.9	55
8	New Method for a Continuous Determination of the Spin Tune in Storage Rings and Implications for Precision Experiments. Physical Review Letters, 2015, 115, 094801.	2.9	53
9	Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads. Review of Scientific Instruments, 2015, 86, 044701.	0.6	49
10	Simple and Portable Magnetic Immunoassay for Rapid Detection and Sensitive Quantification of Plant Viruses. Applied and Environmental Microbiology, 2015, 81, 3039-3048.	1.4	48
11	Nonâ€invasive determination of plant biomass with microwave resonators. Plant, Cell and Environment, 2009, 32, 368-379.	2.8	45
12	Nuclear magnetic resonance in the earth's magnetic field using a nitrogen-cooled superconducting quantum interference device. Applied Physics Letters, 2007, 91, .	1.5	44
13	Aircraft wheel testing with machine-cooled HTS SQUID gradiometer system. IEEE Transactions on Applied Superconductivity, 1999, 9, 3801-3804.	1.1	41
14	Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing. Journal of Magnetism and Magnetic Materials, 2007, 311, 259-263.	1.0	41
15	Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry. Sensors and Actuators B: Chemical, 2021, 337, 129786.	4.0	40
16	SQUID array for magnetic inspection of prestressed concrete bridges. Physica C: Superconductivity and Its Applications, 2002, 368, 91-95.	0.6	39
17	Detection of Magnetic Contaminations in Industrial Products Using HTS SQUIDs. IEEE Transactions on Applied Superconductivity, 2005, 15, 729-732.	1.1	39
18	Liquid state nuclear magnetic resonance at low fields using a nitrogen cooled superconducting quantum interference device. Applied Physics Letters, 2007, 90, 182503.	1.5	39

#	Article	IF	CITATIONS
19	Radio frequency SQUIDs operating at 77 K with 1 GHz lumped-element tank circuits. Applied Physics Letters, 1998, 72, 969-971.	1.5	37
20	Second-order, high-temperature superconducting gradiometer for magnetocardiography in unshielded environment. Applied Physics Letters, 2000, 76, 906-908.	1.5	37
21	Measurement of the permanent electric dipole moment of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Xe</mml:mi><mml:mpresci /><mml:none></mml:none><mml:mn>129</mml:mn></mml:mpresci </mml:mmultiscripts> atom. Physical Review A, 2019. 100</mml:math 	ripts 1.0	37
22	Electrolyte-Gated Graphene Ambipolar Frequency Multipliers for Biochemical Sensing. Nano Letters, 2016, 16, 2295-2300.	4.5	36
23	Planar HTS gradiometers with large baseline. IEEE Transactions on Applied Superconductivity, 1997, 7, 2866-2869.	1.1	35
24	A voltage biased superconducting quantum interference device bootstrap circuit. Superconductor Science and Technology, 2010, 23, 065016.	1.8	35
25	A magnetic nanoparticles relaxation sensor for protein–protein interaction detection at ultra-low magnetic field. Biosensors and Bioelectronics, 2016, 80, 661-665.	5.3	35
26	Reproducibility and reliability of fetal cardiac time intervals using magnetocardiography. Physiological Measurement, 2004, 25, 539-552.	1.2	31
27	Detection of two different influenza A viruses using a nitrocellulose membrane and a magnetic biosensor. Journal of Immunological Methods, 2011, 365, 95-100.	0.6	30
28	HTS SQUID system with Joule-Thomson cryocooler for eddy current nondestructive evaluation of aircraft structures. IEEE Transactions on Applied Superconductivity, 1997, 7, 2860-2865.	1.1	29
29	A simplified poly(dimethylsiloxane) capillary electrophoresis microchip integrated with a lowâ€noise contactless conductivity detector. Electrophoresis, 2011, 32, 699-704.	1.3	26
30	Defect detection and classification using a SQUID based multiple frequency eddy current NDE system. IEEE Transactions on Applied Superconductivity, 2001, 11, 1032-1037.	1.1	25
31	Dc-SQUID magnetometers and gradiometers on the basis of quasiplanar ramp-type Josephson junctions. IEEE Transactions on Applied Superconductivity, 1997, 7, 3702-3705.	1.1	24
32	High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio. Review of Scientific Instruments, 2007, 78, 054701.	0.6	24
33	Aircraft wheel testing with remote eddy current technique using a HTS SQUID magnetometer. IEEE Transactions on Applied Superconductivity, 2001, 11, 1279-1282.	1.1	23
34	Ultra-low field magnetic resonance imaging detection with gradient tensor compensation in urban unshielded environment. Applied Physics Letters, 2013, 102, .	1.5	23
35	High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range. Review of Scientific Instruments, 2014, 85, 114708.	0.6	23
36	A Novel Method for Antibiotic Detection in Milk Based on Competitive Magnetic Immunodetection. Foods, 2020, 9, 1773.	1.9	23

#	Article	IF	CITATIONS
37	Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic Immunodetection. Toxins, 2020, 12, 337.	1.5	23
38	Magnetic immunoassay platform based on the planar frequency mixing magnetic technique. Biosensors and Bioelectronics, 2016, 83, 293-299.	5.3	22
39	Magnetic Detection Structure for Lab-on-Chip Applications Based on the Frequency Mixing Technique. Sensors, 2018, 18, 1747.	2.1	22
40	Sensitive and rapid detection of cholera toxin subunit B using magnetic frequency mixing detection. PLoS ONE, 2019, 14, e0219356.	1.1	22
41	Defect detection in thick aircraft samples using HTS SQUID magnetometers. Physica C: Superconductivity and Its Applications, 2002, 368, 85-90.	0.6	21
42	HTS SQUID gradiometer using substrate resonators operating in an unshielded environment - A portable MCG system. IEEE Transactions on Applied Superconductivity, 2003, 13, 389-392.	1.1	21
43	Suppression of ringing in the tuned input circuit of a SQUID detector used in low-field NMR measurements. Superconductor Science and Technology, 2009, 22, 125022.	1.8	21
44	Overview of low-field NMR measurements using HTS rf-SQUIDs. Physica C: Superconductivity and Its Applications, 2009, 469, 1624-1629.	0.6	21
45	Low-field NMR measurement procedure when SQUID detection is used. Journal of Magnetic Resonance, 2009, 196, 101-104.	1.2	21
46	Development of Fast and Portable Frequency Magnetic Mixing-Based Serological SARS-CoV-2-Specific Antibody Detection Assay. Frontiers in Microbiology, 2021, 12, 643275.	1.5	21
47	Nondestructive evaluation using high-temperature SQUIDs. Physica C: Superconductivity and Its Applications, 2000, 335, 179-183.	0.6	20
48	SQUID gradiometry for magnetocardiography using different noise cancellation techniques. IEEE Transactions on Applied Superconductivity, 2001, 11, 673-676.	1.1	20
49	Determination of heavy metal ions by microchip capillary electrophoresis coupled with contactless conductivity detection. Electrophoresis, 2012, 33, 1247-1250.	1.3	20
50	Multiplex Detection of Different Magnetic Beads Using Frequency Scanning in Magnetic Frequency Mixing Technique. Sensors, 2019, 19, 2599.	2.1	20
51	Applications of high-temperature SQUIDs. Applied Superconductivity, 1995, 3, 367-381.	0.5	19
52	Statistical study of biomechanics of living brain cells during growth and maturation on artificial substrates. Biomaterials, 2016, 106, 240-249.	5.7	19
53	An insight into voltage-biased superconducting quantum interference devices. Applied Physics Letters, 2012, 101, .	1.5	18
54	Conductivity tomography for non-destructive evaluation using pulsed eddy current with HTS AQUID magnetometer. IEEE Transactions on Applied Superconductivity, 2003, 13, 215-218.	1.1	17

#	Article	IF	CITATIONS
55	Optimization of NDE Characterization Parameters for a RF-SQUID Based System Using FEM Analysis. IEEE Transactions on Applied Superconductivity, 2009, 19, 791-795.	1.1	17
56	High intrinsic noise and absence of hysteresis in superconducting quantum interference devices with large Steward-McCumber parameter. Applied Physics Letters, 2013, 103, .	1.5	16
57	Magnetic particle imaging with a planar frequency mixing magnetic detection scanner. Review of Scientific Instruments, 2014, 85, 013705.	0.6	16
58	Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment. Journal of Magnetic Resonance, 2018, 286, 52-59.	1.2	16
59	Operation of HTS SQUIDs with a portable cryostat: a SQUID system in conjunction with eddy current technique for non-destructive evaluation. IEEE Transactions on Applied Superconductivity, 1997, 7, 2878-2881.	1.1	15
60	Peculiarities of SQUID magnetometer application in TEM. Geophysics, 2002, 67, 739-745.	1.4	15
61	Defect detection in thick aircraft samples based on HTS SQUID-magnetometry and pattern recognition. IEEE Transactions on Applied Superconductivity, 2003, 13, 250-253.	1.1	15
62	Appearance of Sign Reversal in Geophysical Transient Electromagnetics With a SQUID Due to Stacking. IEEE Transactions on Applied Superconductivity, 2005, 15, 745-748.	1.1	15
63	Influence of the first amplifier stage in MEA systems on extracellular signal shapes. Biosensors and Bioelectronics, 2007, 22, 1092-1096.	5.3	15
64	Relaxation Behavior Study of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles at Ultralow and Ultrahigh Magnetic Fields. Journal of Physical Chemistry B, 2011, 115, 14789-14793.	1.2	15
65	Operation of HTS dc-SQUID sensors in high magnetic fields. IEEE Transactions on Applied Superconductivity, 1999, 9, 3386-3391.	1.1	14
66	Operation of rf SQUID magnetometers with a multi-turn flux transformer integrated with a superconducting labyrinth resonator. IEEE Transactions on Applied Superconductivity, 1999, 9, 3396-3400.	1.1	14
67	Multi-Channel HTS rf SQUID Gradiometer System Recording Fetal and Adult Magnetocardiograms. IEEE Transactions on Applied Superconductivity, 2005, 15, 631-634.	1.1	14
68	A simple poly(dimethylsiloxane) electrophoresis microchip with an integrated contactless conductivity detector. Mikrochimica Acta, 2011, 172, 193-198.	2.5	14
69	Low-field MRI measurements using a tuned HTS SQUID as detector and permanent magnet pre-polarization field. Superconductor Science and Technology, 2012, 25, 075013.	1.8	14
70	Planar SQUID magnetometer integrated with bootstrap circuitry under different bias modes. Superconductor Science and Technology, 2012, 25, 125007.	1.8	13
71	Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device. Review of Scientific Instruments, 2014, 85, 054707.	0.6	13
72	A simple SQUID system with one operational amplifier as readout electronics. Superconductor Science and Technology, 2014, 27, 115004.	1.8	13

#	Article	IF	CITATIONS
73	Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet. Review of Scientific Instruments, 2016, 87, 064301.	0.6	13
74	Eddy-current nondestructive material evaluation by high-temperature SQUID gradiometer using rotating magnetic fields. IEEE Transactions on Applied Superconductivity, 1997, 7, 2874-2877.	1.1	12
75	Recording fetal and adult magnetocardiograms using high-temperature superconducting quantum interference device gradiometers. IEEE Transactions on Applied Superconductivity, 2003, 13, 3862-3866.	1.1	12
76	Low Field MRI Detection With Tuned HTS SQUID Magnetometer. IEEE Transactions on Applied Superconductivity, 2011, 21, 509-513.	1.1	12
77	Size and Compositional Effects on Contrast Efficiency of Functionalized Superparamagnetic Nanoparticles at Ultralow and Ultrahigh Magnetic Fields. Journal of Physical Chemistry C, 2012, 116, 17880-17884.	1.5	12
78	Precise measurement of magnetic field gradients from free spin precession signals of 3He and 129Xe magnetometers. European Physical Journal D, 2017, 71, 1.	0.6	12
79	HTS SQUID magnetometer with SQUID vector reference for operation in unshielded environment. IEEE Transactions on Applied Superconductivity, 1999, 9, 3684-3687.	1.1	11
80	Effect of repetitive transmitter signals on SQUID response in geophysical TEM. IEEE Transactions on Applied Superconductivity, 2001, 11, 888-891.	1.1	11
81	1/f noise characteristics of SEJ Y-Ba-Cu-O rf-SQUIDs on LaAlO/sub 3/ substrate and the step structure, film, and temperature dependence. IEEE Transactions on Applied Superconductivity, 2001, 11, 1363-1366.	1.1	11
82	Statistical characterization of voltage-biased SQUIDs with weakly damped junctions. Superconductor Science and Technology, 2013, 26, 065002.	1.8	11
83	Study of weakly damped superconducting quantum interference devices operated in different bias modes in presence of external shunt resistance. Applied Physics Letters, 2013, 103, .	1.5	11
84	3D Printed Modular Immunofiltration Columns for Frequency Mixing-Based Multiplex Magnetic Immunodetection. Sensors, 2019, 19, 148.	2.1	11
85	Measurement of the magnetophoretic velocity of different superparamagnetic beads. Journal of Magnetism and Magnetic Materials, 2019, 477, 244-248.	1.0	11
86	Comparison of Noise Performance of the dc SQUID Bootstrap Circuit With That of the Standard Flux Modulation dc SQUID Readout Scheme. IEEE Transactions on Applied Superconductivity, 2011, 21, 501-504.	1.1	10
87	An approach to optimization of the superconducting quantum interference device bootstrap circuit. Superconductor Science and Technology, 2011, 24, 065023.	1.8	10
88	Practical dc SQUID system: Devices and electronics. Physica C: Superconductivity and Its Applications, 2015, 518, 73-76.	0.6	10
89	A novel three-dimensional magnetic particle imaging system based on the frequency mixing for the point-of-care diagnostics. Scientific Reports, 2020, 10, 11833.	1.6	10
90	Effects of the step structure on the yield, operating temperature, and the noise in step-edge Josephson junction rf-SQUID magnetometers and gradiometers. Physica C: Superconductivity and Its Applications, 2001, 354, 40-44.	0.6	9

#	Article	IF	CITATIONS
91	The set-up of a high temperature superconductor radio-frequency SQUID microscope for magnetic nanoparticle detection. Superconductor Science and Technology, 2006, 19, S261-S265.	1.8	9
92	Foetal magnetocardiography with a multi-channel HTS rf SQUID gradiometer. Superconductor Science and Technology, 2006, 19, S266-S270.	1.8	9
93	Voltage Biased SQUID Bootstrap Circuit: Circuit Model and Numerical Simulation. IEEE Transactions on Applied Superconductivity, 2011, 21, 354-357.	1.1	9
94	A SQUID gradiometer module with wire-wound pickup antenna and integrated voltage feedback circuit. Physica C: Superconductivity and Its Applications, 2012, 480, 10-13.	0.6	9
95	On-chip electromagnetic tweezers – 3-dimensional particle actuation using microwire crossbar arrays. Lab on A Chip, 2016, 16, 4749-4758.	3.1	9
96	Comparative Modeling of Frequency Mixing Measurements of Magnetic Nanoparticles Using Micromagnetic Simulations and Langevin Theory. Nanomaterials, 2021, 11, 1257.	1.9	9
97	High-Performance Low-Field NMR Utilizing a High-\$T_{m c}\$ rf SQUID. IEEE Transactions on Applied Superconductivity, 2009, 19, 831-834.	1.1	8
98	Einsatz von Magnetfiltern in der Bioverfahrenstechnik. Teil 3 - Neues Messverfahren zur Quantifizierung von Magnetbeads in strĶmenden Suspensionen. Chemie-Ingenieur-Technik, 2011, 83, 851-857.	0.4	8
99	Magnetic Field Improved ULF-NMR Measurement in an Unshielded Laboratory Using a Low-Tc SQUID. Physics Procedia, 2012, 36, 388-393.	1.2	8
100	Tuned HTS SQUID-Detected Low Field MRI Using a Permanent Magnet for Pre-polarization With Automatic Transportation. IEEE Transactions on Applied Superconductivity, 2013, 23, 1601104-1601104.	1.1	8
101	Design and Characterization of Microwave Cavity Resonators for Noninvasive Monitoring of Plant Water Distribution. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 2894-2904.	2.9	8
102	Magnetic field behavior of YBCO step-edge Josephson junctions in rf-washer SQUIDs. IEEE Transactions on Applied Superconductivity, 2001, 11, 1339-1342.	1.1	7
103	Junction characteristics and magnetic field dependencies of low noise step edge junction Rf-SQUIDs for unshielded applications. IEEE Transactions on Applied Superconductivity, 2003, 13, 833-836.	1.1	7
104	Magnetic flux leakage (MFL) for the non-destructive evaluation of pre-stressed concrete structures. , 2010, , 215-242.		7
105	Parameter tolerance of the SQUID bootstrap circuit. Superconductor Science and Technology, 2012, 25, 015006.	1.8	7
106	Construction of 3D-rendering imaging of an ischemic rat brain model using the planar FMMD technique. Scientific Reports, 2019, 9, 19050.	1.6	7
107	Compensation techniques for high-temperature superconducting quantum interference device gradiometers operating in unshielded environment. Review of Scientific Instruments, 1997, 68, 3082-3084.	0.6	6
108	Multiplexed SQUID array for non-destructive evaluation of aircraft structures. IEEE Transactions on Applied Superconductivity, 2001, 11, 1168-1171.	1.1	6

#	Article	IF	CITATIONS
109	Noise, junction characteristics, and magnetic field dependencies of bicrystal grain boundary junction Rf-SQUIDs. IEEE Transactions on Applied Superconductivity, 2003, 13, 873-876.	1.1	6
110	Analytical Model for the Extraction of Flaw-Induced Current Interactions for SQUID NDE. IEEE Transactions on Applied Superconductivity, 2011, 21, 3442-3446.	1.1	6
111	<i>In situ</i> analysis of free radicals from the photodecomposition of hydrogen peroxide using a frequency-mixing magnetic detector. Applied Physics Letters, 2012, 101, 054105.	1.5	6
112	Novel Stable and Reliable Readout Electronics for HTS rf SQUID. Physics Procedia, 2012, 36, 306-311.	1.2	6
113	Onâ€chip control of magnetic particles. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 871-874.	0.8	6
114	In situ measurement of superoxide and hydroxyl radicals by frequency mixing detection technique. Analytical Biochemistry, 2014, 447, 141-145.	1.1	6
115	Magnetic immunoassay based on frequency mixing magnetic detection and magnetic particles of different magnetic properties. Analytical Methods, 2014, 6, 8055-8058.	1.3	6
116	Analysis of a dc SQUID readout scheme with voltage feedback circuit and low-noise preamplifier. Superconductor Science and Technology, 2014, 27, 085011.	1.8	6
117	Effect of magnetic field fluctuation on ultra-low field MRI measurements in the unshielded laboratory environment. Journal of Magnetic Resonance, 2015, 257, 8-14.	1.2	6
118	Characterization of the mechanical properties of HL-1 cardiomyocytes with high throughput magnetic tweezers. Applied Physics Letters, 2015, 107, .	1.5	6
119	Prototype of Multi-Channel High-Tc SQUID Metallic Contaminant Detector for Large Sized Packaged Food. IEICE Transactions on Electronics, 2017, E100.C, 269-273.	0.3	6
120	Multiplex Detection of Magnetic Beads Using Offset Field Dependent Frequency Mixing Magnetic Detection. Sensors, 2021, 21, 5859.	2.1	6
121	Adaptive frequency dependent gradiometry applied to SQUID magnetocardiography. IEEE Transactions on Applied Superconductivity, 2003, 13, 364-367.	1.1	5
122	Analysis of Some Nondestructive Evaluation Experiments Using Eddy Currents. Research in Nondestructive Evaluation, 2009, 20, 159-177.	0.5	5
123	Comparison of different detectors in low field NMR measurements. Journal of Physics: Conference Series, 2010, 234, 042008.	0.3	5
124	An inspection of force reduction in high force electromagnetic tweezers made of FeCo-V foil by laser cutting. Journal of Applied Physics, 2015, 118, .	1.1	5
125	Inspection of Prestressed Concrete Members using the Magnetic Leakage Flux Measurement Method $\hat{a} \in \mathbb{C}^{2}$ Estimation of Detection Limit. , 2007, , 639-649.		5
126	Prüfung von Spannbetonbauteilen mit magnetischen Methoden. Beton- Und Stahlbetonbau, 2010, 105, 154-164.	0.4	4

#	Article	IF	CITATIONS
127	Actuation and tracking of a single magnetic particle on a chip. Applied Physics Letters, 2012, 100, .	1.5	4
128	Permanent Magnet Pre-Polarization in Low Field MRI Measurements Using SQUID. Physics Procedia, 2012, 36, 274-279.	1.2	4
129	A SQUID Bootstrap Circuit with a Large Parameter Tolerance. Chinese Physics Letters, 2013, 30, 018501.	1.3	4
130	Flux modulation scheme for direct current SQUID readout revisited. Applied Physics Letters, 2016, 108,	1.5	4
131	Passivation of magnetic material used in cell culture environment. Sensors and Actuators B: Chemical, 2016, 236, 85-90.	4.0	4
132	Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples. Journal of Visualized Experiments, 2016, , .	0.2	4
133	HP-Xe to go: Storage and transportation of hyperpolarized 129Xenon. Journal of Magnetic Resonance, 2016, 265, 197-199.	1.2	4
134	Harmonic Analysis for Finding the Optimum Working Point of High-Tc RF SQUID. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.1	4
135	Non-constant bias current for dc SQUID operation. Physica C: Superconductivity and Its Applications, 2002, 368, 181-184.	0.6	3
136	Non destructive testing (NDT) with high Tc RF SQUIDs. Journal of Physics: Conference Series, 2008, 97, 012263.	0.3	3
137	The Effect of Low Frequency Disturbance to SQUID Based Low Field NMR. IEEE Transactions on Applied Superconductivity, 2009, 19, 827-830.	1.1	3
138	Time-Domain Frequency Correction Method for Averaging Low-Field NMR Signals Acquired in Urban Laboratory Environment. Chinese Physics Letters, 2012, 29, 107601.	1.3	3
139	Simulation and Measurements of Transient Fields From Conductive Plates of Shielded Room for SQUID-Based Ultralow Field Magnetic Resonance Imaging. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	3
140	<title>Magnetic field measurements on bridges and development of a mobile SQUID system</title> . , 1999, , .		3
141	Nondestructive Evaluation of Materials and Structures using SQUIDs. , 0, , 441-479.		3
142	Compensation techniques for HTS-rf-SQUID magnetometers operating in unshielded environments. Applied Superconductivity, 1997, 5, 333-338.	0.5	2
143	Berührungslose Messung von Korrosionsströmen an Kontaktelementen mit Hochtemperatur SQUID-Sensoren in magnetisch nicht abgeschirmter Umgebung. Materials and Corrosion - Werkstoffe Und Korrosion, 2002, 53, 417-421.	0.8	2
144	Long baseline hardware gradiometer based on HTS rf-SQUIDs with substrate resonators. IEEE Transactions on Applied Superconductivity, 2003, 13, 841-844.	1.1	2

#	Article	IF	CITATIONS
145	Analysis of electrical characteristics and magnetic field dependences of YBCO step edge and bicrystal grain boundary junctions for rf-SQUID applications. Superconductor Science and Technology, 2004, 17, S375-S380.	1.8	2
146	Signal enhancement techniques for rf SQUID based magnetic imaging systems. Superconductor Science and Technology, 2006, 19, 821-824.	1.8	2
147	SQUID-detected NMR in Earth's magnetic field. Journal of Physics: Conference Series, 2008, 97, 012026.	0.3	2
148	Effect of voltage source internal resistance on the SQUID bootstrap circuit. Superconductor Science and Technology, 2012, 25, 015012.	1.8	2
149	Noise Behavior of SQUID Bootstrap Circuit Studied by Numerical Simulation. Physics Procedia, 2012, 36, 127-132.	1.2	2
150	M(H) shape reconstruction using magnetic spectroscopy. Journal of Magnetism and Magnetic Materials, 2012, 324, 895-902.	1.0	2
151	Magnetic Detection Structure for LOC Immunoassays, Multiphysics Simulations and Experimental Results. Proceedings (mdpi), 2017, 1, .	0.2	2
152	Optimized Continuous Application of Hyperpolarized Xenon to Liquids. Journal of Physical Chemistry A, 2018, 122, 9359-9369.	1.1	2
153	Electro-optic sensor for static fields. Applied Physics B: Lasers and Optics, 2019, 125, 1.	1.1	2
154	Sensor Configuration and Algorithms for Power-Line Interference Suppression in Low Field Nuclear Magnetic Resonance. Sensors, 2019, 19, 3566.	2.1	2
155	REGISTRATION OF FETAL CARDIAC ACTIVITY USING LTS AND HTS SQUID BIOMAGNETOMETERS. Biomedizinische Technik, 2003, 48, 372-373.	0.9	1
156	Recording fMCG and adult MCG using multi-channel HTS rf SQUID gradiometers. International Congress Series, 2007, 1300, 769-772.	0.2	1
157	Harmonic Analysis of High-Tc Rf SQUID to Determine the Optimum Working Condition for Its Automatic Application. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.1	1
158	Harmonic Analysis and Self-Tuning Control Combining Wavelet Analysis and Identification for High-T _c RF SQUID. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.1	1
159	Eddy current tomography using rotating magnetic fields for deep SQUID NDE. Superconductor Science and Technology, 1997, 10, 901-903.	1.8	0
160	Radio frequency bias current scheme for dc superconducting quantum interference device. IEEE Transactions on Applied Superconductivity, 1999, 9, 3813-3816.	1.1	0
161	Reply by the authors to the discussion by Brian R. Spies. Geophysics, 2004, 69, 626-628.	1.4	0
162	Front-end Assembly Optimization for High-Tcrf-SQUID based Magnetic Field Imaging Systems. Journal of Physics: Conference Series, 2006, 43, 1239-1242.	0.3	0

#	Article	IF	CITATIONS
163	Low-field MRI detected by tuned HTS SQUID utilizing permanent magnet as pre-polarization field. Biomedizinische Technik, 2012, 57, .	0.9	0
164	Investigation of Helium-Cooled Planar Transformer-Coupled SQUID Magnetometer. Journal of Physics: Conference Series, 2014, 507, 042051.	0.3	0
165	Biomagnetic Sensing. Springer Series on Chemical Sensors and Biosensors, 2017, , 449-474.	0.5	0
166	A new limit of the 129Xenon Electric Dipole Moment. EPJ Web of Conferences, 2019, 219, 02003.	0.1	0
167	HTS rf SQUID System for Magnetic Nanoparticle Detection. Sensor Letters, 2009, 7, 286-288.	0.4	0