Kai Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5997081/publications.pdf

Version: 2024-02-01

361045 580395 2,914 25 23 20 citations h-index g-index papers 26 26 26 4755 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011, 32, 3435-3446.	5.7	871
2	Wellâ€Defined, Reversible Boronate Crosslinked Nanocarriers for Targeted Drug Delivery in Response to Acidic pHâ€Values and <i>cis</i> à€Diols. Angewandte Chemie - International Edition, 2012, 51, 2864-2869.	7.2	318
3	Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials, 2011, 32, 6633-6645.	5.7	288
4	Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Advanced Drug Delivery Reviews, 2014, 66, 58-73.	6.6	259
5	A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials, 2009, 30, 6006-6016.	5.7	211
6	Well-Defined, Size-Tunable, Multifunctional Micelles for Efficient Paclitaxel Delivery for Cancer Treatment. Bioconjugate Chemistry, 2010, 21, 1216-1224.	1.8	142
7	A novel size-tunable nanocarrier system for targeted anticancer drug delivery. Journal of Controlled Release, 2010, 144, 314-323.	4.8	113
8	PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. Journal of Controlled Release, 2011, 155, 272-281.	4.8	100
9	<p>Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 6957-6970.	3.3	94
10	"OA02―Peptide Facilitates the Precise Targeting of Paclitaxel-Loaded Micellar Nanoparticles to Ovarian Cancer <i>In Vivo</i> . Cancer Research, 2012, 72, 2100-2110.	0.4	87
11	The effect of particle size on the genotoxicity of gold nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 710-719.	2.1	58
12	Disulfide Cross-Linked Micelles for the Targeted Delivery of Vincristine to B-Cell Lymphoma. Molecular Pharmaceutics, 2012, 9, 1727-1735.	2.3	50
13	Targeted Drug/Gene/Photodynamic Therapy via a Stimuliâ€Responsive Dendriticâ€Polymerâ€Based Nanococktail for Treatment of EGFRâ€TKIâ€Resistant Nonâ€Smallâ€Cell Lung Cancer. Advanced Materials, 2022, 34, e2201516.	11.1	49
14	Microfluidic-Enabled Print-to-Screen Platform for High-Throughput Screening of Combinatorial Chemotherapy. Analytical Chemistry, 2015, 87, 10166-10171.	3.2	39
15	Role of surface charge in determining the biological effects of CdSe/ZnS quantum dots. International Journal of Nanomedicine, 2015, 10, 7073.	3.3	33
16	Disulfide cross-linked micelles of novel HDAC inhibitor thailandepsin A for the treatment of breast cancer. Biomaterials, 2015, 67, 183-193.	5.7	32
17	LHRHâ€Targeted Redoxâ€Responsive Crosslinked Micelles Impart Selective Drug Delivery and Effective Chemotherapy in Tripleâ€Negative Breast Cancer. Advanced Healthcare Materials, 2021, 10, e2001196.	3.9	27
18	<p>The Effects of Gold Nanoparticles on Leydig Cells and Male Reproductive Function in Mice</p> . International Journal of Nanomedicine, 2020, Volume 15, 9499-9514.	3.3	25

#	Article	IF	CITATION
19	A facile strategy for fine-tuning the stability and drug release of stimuli-responsive cross-linked micellar nanoparticles towards precision drug delivery. Nanoscale, 2017, 9, 7765-7770.	2.8	20
20	Reversibly disulfide cross-linked micelles improve the pharmacokinetics and facilitate the targeted, on-demand delivery of doxorubicin in the treatment of B-cell lymphoma. Nanoscale, 2018, 10, 8207-8216.	2.8	17
21	Telodendrimer-based nanocarriers for the treatment of ovarian cancer. Therapeutic Delivery, 2013, 4, 1279-1292.	1.2	11
22	Prescription of Sageretia hamosa Brongn Relieved Goiter through Promoted Apoptosis of Thyroid Cells via miR-511-3p and PTEN/PI3K/Akt Pathway. Journal of Healthcare Engineering, 2021, 2021, 1-13.	1.1	2
23	Inside Back Cover: Well-Defined, Reversible Boronate Crosslinked Nanocarriers for Targeted Drug Delivery in Response to Acidic pHâ€Values andcis-Diols (Angew. Chem. Int. Ed. 12/2012). Angewandte Chemie - International Edition, 2012, 51, 3027-3027.	7.2	1