Karl Obrietan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5996730/publications.pdf Version: 2024-02-01

KADI ORDIFTAN

#	Article	IF	CITATIONS
1	Paclitaxel chemotherapy disrupts behavioral and molecular circadian clocks in mice. Brain, Behavior, and Immunity, 2022, 99, 106-118.	2.0	7
2	Circadian clocks, cognition, and Alzheimer's disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Molecular Neurodegeneration, 2022, 17, 35.	4.4	23
3	MicroRNA-212-5p, an anti-proliferative miRNA, attenuates hypoxia and sugen/hypoxia-induced pulmonary hypertension in rodents. Molecular Therapy - Nucleic Acids, 2022, 29, 204-216.	2.3	7
4	SynGAP is expressed in the murine suprachiasmatic nucleus and regulates circadianâ€gated locomotor activity and lightâ€entrainment capacity. European Journal of Neuroscience, 2021, 53, 732-749.	1.2	7
5	Light-induced changes in the suprachiasmatic nucleus transcriptome regulated by the ERK/MAPK pathway. PLoS ONE, 2021, 16, e0249430.	1.1	5
6	Mammary tumors compromise time-of-day differences in hypothalamic gene expression and circadian behavior and physiology in mice. Brain, Behavior, and Immunity, 2019, 80, 805-817.	2.0	13
7	A Symphony of Signals: Intercellular and Intracellular Signaling Mechanisms Underlying Circadian Timekeeping in Mice and Flies. International Journal of Molecular Sciences, 2019, 20, 2363.	1.8	24
8	miR-132/212 is induced by stress and its dysregulation triggers anxiety-related behavior. Neuropharmacology, 2019, 144, 256-270.	2.0	30
9	miR-132 couples the circadian clock to daily rhythms of neuronal plasticity and cognition. Learning and Memory, 2018, 25, 214-229.	0.5	48
10	Circadian expression and functional characterization of PEA â€15 within the mouse suprachiasmatic nucleus. European Journal of Neuroscience, 2018, 47, 845-857.	1.2	3
11	Data highlighting the expression of two miR-132/212 target genes—Sirt1 and Pten—after chronic stress. Data in Brief, 2018, 21, 2323-2329.	0.5	4
12	The Phosphorylation of CREB at Serine 133 Is a Key Event for Circadian Clock Timing and Entrainment in the Suprachiasmatic Nucleus. Journal of Biological Rhythms, 2018, 33, 497-514.	1.4	21
13	Modulation of learning and memory by the genetic disruption of circadian oscillator populations. Physiology and Behavior, 2018, 194, 387-393.	1.0	27
14	Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms. Neural Plasticity, 2018, 2018, 1-13.	1.0	86
15	Mitogen- and Stress-Activated Protein Kinase 1 Regulates Status Epilepticus-Evoked Cell Death in the Hippocampus. ASN Neuro, 2017, 9, 175909141772660.	1.5	10
16	Commentary: miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock. Journal of Neurology and Neuromedicine, 2017, 3, 21-25.	0.9	1
17	Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits. Behavioural Brain Research, 2016, 308, 222-235.	1.2	81
18	Status epilepticus stimulates NDEL1 expression via the CREB/CRE pathway in the adult mouse brain. Neuroscience, 2016, 331, 1-12.	1.1	9

#	Article	IF	CITATIONS
19	Intercellular Coupling of the Cell Cycle and Circadian Clock in Adult Stem Cell Culture. Molecular Cell, 2016, 64, 900-912.	4.5	93
20	Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome. Learning and Memory, 2016, 23, 61-71.	0.5	93
21	The miR-132/212 locus: a complex regulator of neuronal plasticity, gene expression and cognition. RNA & Disease (Houston, Tex), 2016, 3, .	1.0	21
22	Mitogen and stress-activated kinases 1/2 regulate ischemia-induced hippocampal progenitor cell proliferation and neurogenesis. Neuroscience, 2015, 285, 292-302.	1.1	25
23	The Involvement of MicroRNAs in Major Depression, Suicidal Behavior, and Related Disorders: A Focus on miR-185 and miR-491-3p. Cellular and Molecular Neurobiology, 2014, 34, 17-30.	1.7	92
24	Ribosomal S6 kinase regulates ischemia-induced progenitor cell proliferation in the adult mouse hippocampus. Experimental Neurology, 2014, 253, 72-81.	2.0	10
25	Profiling status epilepticus-induced changes in hippocampal RNA expression using high-throughput RNA sequencing. Scientific Reports, 2014, 4, 6930.	1.6	94
26	Mitogen―and stressâ€activated protein kinase 1 modulates photic entrainment of the suprachiasmatic circadian clock. European Journal of Neuroscience, 2013, 37, 130-140.	1.2	17
27	miRNA-132: a dynamic regulator of cognitive capacity. Brain Structure and Function, 2013, 218, 817-831.	1.2	119
28	Clock and Light Regulation of the CREB Coactivator CRTC1 in the Suprachiasmatic Circadian Clock. Journal of Neuroscience, 2013, 33, 9021-9027.	1.7	43
29	MicroRNA as therapeutic targets for treatment of depression. Neuropsychiatric Disease and Treatment, 2013, 9, 1011.	1.0	45
30	A Genome-Wide Screen of CREB Occupancy Identifies the RhoA Inhibitors Par6C and Rnd3 as Regulators of BDNF-Induced Synaptogenesis. PLoS ONE, 2013, 8, e64658.	1.1	57
31	MicroRNAs: fundamental regulators of gene expression in major affective disorders and suicidal behavior?. Frontiers in Cellular Neuroscience, 2013, 7, 208.	1.8	6
32	Mitogen―and stressâ€activated kinases regulate progenitor cell proliferation and neuron development in the adult dentate gyrus. Journal of Neurochemistry, 2012, 123, 676-688.	2.1	18
33	MSK1 regulates environmental enrichment-induced hippocampal plasticity and cognitive enhancement. Learning and Memory, 2012, 19, 550-560.	0.5	37
34	MicroRNAs: a potential interface between the circadian clock and human health. Genome Medicine, 2011, 3, 10.	3.6	49
35	The circadian molecular clock creates epidermal stem cell heterogeneity. Nature, 2011, 480, 209-214.	13.7	273
36	Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus. Neuroscience, 2011, 181, 79-88.	1.1	77

#	Article	IF	CITATIONS
37	CREB: a multifaceted regulator of neuronal plasticity and protection. Journal of Neurochemistry, 2011, 116, 1-9.	2.1	401
38	Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nature Communications, 2011, 2, 327.	5.8	123
39	Proteomic Profiling of the Epileptic Dentate Gyrus. Brain Pathology, 2010, 20, 1077-1089.	2.1	40
40	CREB Influences Timing and Entrainment of the SCN Circadian Clock. Journal of Biological Rhythms, 2010, 25, 410-420.	1.4	66
41	Mammalian Target of Rapamycin Signaling Modulates Photic Entrainment of the Suprachiasmatic Circadian Clock. Journal of Neuroscience, 2010, 30, 6302-6314.	1.7	99
42	Cannabinoids Excite Circadian Clock Neurons. Journal of Neuroscience, 2010, 30, 10061-10066.	1.7	50
43	An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Molecular and Cellular Neurosciences, 2010, 43, 146-156.	1.0	242
44	Transgenic miR132 Alters Neuronal Spine Density and Impairs Novel Object Recognition Memory. PLoS ONE, 2010, 5, e15497.	1.1	203
45	mTOR Signaling and Entrainment of the Mammalian Circadian Clock. Molecular and Cellular Pharmacology, 2010, 2, 125-130.	1.7	33
46	Segregation of expression of mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain. Human Molecular Genetics, 2009, 18, 3110-3124.	1.4	44
47	CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington's disease. Neurobiology of Disease, 2009, 36, 259-268.	2.1	46
48	The CREB/CRE transcriptional pathway: protection against oxidative stressâ€mediated neuronal cell death. Journal of Neurochemistry, 2009, 108, 1251-1265.	2.1	140
49	IGFâ€1 receptorâ€mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia, 2008, 56, 791-800.	2.5	129
50	Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock. Molecular and Cellular Neurosciences, 2008, 38, 312-324.	1.0	82
51	An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9093-9098.	3.3	495
52	Revealing a Role of MicroRNAs in the Regulation of the Biological Clock. Cell Cycle, 2007, 6, 3034-3038.	1.3	41
53	Synaptic Plasticity (and the Lack Thereof) in Hippocampal CA2 Neurons. Journal of Neuroscience, 2007, 27, 12025-12032.	1.7	150
54	Cannabinoids Excite Hypothalamic Melanin-Concentrating Hormone But Inhibit Hypocretin/Orexin Neurons: Implications for Cannabinoid Actions on Food Intake and Cognitive Arousal. Journal of Neuroscience, 2007, 27, 4870-4881.	1.7	94

#	Article	IF	CITATIONS
55	Status Epilepticus-Induced Somatostatinergic Hilar Interneuron Degeneration Is Regulated by Striatal Enriched Protein Tyrosine Phosphatase. Journal of Neuroscience, 2007, 27, 2999-3009.	1.7	75
56	microRNA Modulation of Circadian-Clock Period and Entrainment. Neuron, 2007, 54, 813-829.	3.8	520
57	Protein kinase C modulates the phaseâ€delaying effects of light in the mammalian circadian clock. European Journal of Neuroscience, 2007, 26, 451-462.	1.2	27
58	CRE-mediated transcription and COX-2 expression in the pilocarpine model of status epilepticus. Neurobiology of Disease, 2007, 25, 80-91.	2.1	58
59	Dexras1: Shaping the responsiveness of the circadian clock. Seminars in Cell and Developmental Biology, 2006, 17, 345-351.	2.3	19
60	A sensitive and selective assay of neuronal degeneration in cell culture. Journal of Neuroscience Methods, 2006, 154, 239-244.	1.3	24
61	The Molecular Gatekeeper Dexras1 Sculpts the Photic Responsiveness of the Mammalian Circadian Clock. Journal of Neuroscience, 2006, 26, 12984-12995.	1.7	57
62	Light Stimulates MSK1 Activation in the Suprachiasmatic Nucleus via a PACAP-ERK/MAP Kinase-Dependent Mechanism. Journal of Neuroscience, 2005, 25, 5305-5313.	1.7	72
63	Activity-Dependent Neuroprotection and cAMP Response Element-Binding Protein (CREB): Kinase Coupling, Stimulus Intensity, and Temporal Regulation of CREB Phosphorylation at Serine 133. Journal of Neuroscience, 2005, 25, 1137-1148.	1.7	154
64	Mitogen- and Stress-Activated Protein Kinase 1 Mediates cAMP Response Element-Binding Protein Phosphorylation and Activation by Neurotrophins. Journal of Neuroscience, 2004, 24, 4324-4332.	1.7	188
65	CRE-Mediated Transcription Is Increased in Huntington's Disease Transgenic Mice. Journal of Neuroscience, 2004, 24, 791-796.	1.7	94
66	Light- and clock-dependent regulation of ribosomal S6 kinase activity in the suprachiasmatic nucleus. European Journal of Neuroscience, 2004, 19, 907-915.	1.2	36
67	Dexras1 Potentiates Photic and Suppresses Nonphotic Responses of the Circadian Clock. Neuron, 2004, 43, 715-728.	3.8	101
68	The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus. European Journal of Neuroscience, 2003, 17, 1617-1627.	1.2	105
69	Temporal Regulation of Light-Induced Extracellular Signal-Regulated Kinase Activation in the Suprachiasmatic Nucleus. Journal of Neurophysiology, 2003, 90, 3854-3863.	0.9	57
70	The p42/44 Mitogen-activated Protein Kinase Pathway Couples Photic Input to Circadian Clock Entrainment. Journal of Biological Chemistry, 2002, 277, 29519-29525.	1.6	139
71	cAMP Response Element-Mediated Gene Expression in Transgenic Reporter Gene Mouse Strain. Methods in Enzymology, 2002, 345, 570-584.	0.4	3
72	Phosphorylation of CBP Mediates Transcriptional Activation by Neural Activity and CaM Kinase IV. Neuron, 2002, 34, 235-244.	3.8	305

#	Article	IF	CITATIONS
73	PACAP Potentiates L-Type Calcium Channel Conductance in Suprachiasmatic Nucleus Neurons by Activating the MAPK Pathway. Journal of Neurophysiology, 2002, 88, 1374-1386.	0.9	59
74	Excitatory Actions of GABA Increase BDNF Expression via a MAPK-CREB–Dependent Mechanism—A Positive Feedback Circuit in Developing Neurons. Journal of Neurophysiology, 2002, 88, 1005-1015.	0.9	139
75	Short circuiting the circadian clock. Nature Neuroscience, 2002, 5, 616-618.	7.1	9
76	GABA _B Receptor-Mediated Regulation of Glutamate-Activated Calcium Transients in Hypothalamic and Cortical Neuron Development. Journal of Neurophysiology, 1999, 82, 94-102.	0.9	43
77	Making New Connections. Neuron, 1999, 23, 11-14.	3.8	579
78	Circadian Regulation of cAMP Response Element-mediated Gene Expression in the Suprachiasmatic Nuclei. Journal of Biological Chemistry, 1999, 274, 17748-17756.	1.6	251
79	Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nature Neuroscience, 1998, 1, 595-601.	7.1	487
80	Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nature Neuroscience, 1998, 1, 693-700.	7.1	338
81	Cross Talk between ERK and PKA Is Required for Ca2+ Stimulation of CREB-Dependent Transcription and ERK Nuclear Translocation. Neuron, 1998, 21, 869-883.	3.8	820
82	Stimulation of Type 1 and Type 8 Ca2+/Calmodulin-sensitive Adenylyl Cyclases by the Gs-coupled 5-Hydroxytryptamine Subtype 5-HT7AReceptor. Journal of Biological Chemistry, 1998, 273, 17469-17476.	1.6	85
83	Presynaptic and Postsynaptic Actions and Modulation of Neuroendocrine Neurons by a New Hypothalamic Peptide, Hypocretin/Orexin. Journal of Neuroscience, 1998, 18, 7962-7971.	1.7	524
84	Glutamate Inhibits GABA Excitatory Activity in Developing Neurons. Journal of Neuroscience, 1998, 18, 10749-10761.	1.7	69
85	GABA _B Receptor-Mediated Inhibition of GABA _A Receptor Calcium Elevations in Developing Hypothalamic Neurons. Journal of Neurophysiology, 1998, 79, 1360-1370.	0.9	66
86	Synaptically coupled central nervous system neurons lack centrosomal Î ³ -tubulin. Neuroscience Letters, 1997, 229, 17-20.	1.0	39
87	GABA Activity Mediating Cytosolic Ca ²⁺ Rises in Developing Neurons Is Modulated by cAMP-Dependent Signal Transduction. Journal of Neuroscience, 1997, 17, 4785-4799.	1.7	46
88	Excitatory Actions of GABA after Neuronal Trauma. Journal of Neuroscience, 1996, 16, 4283-4292.	1.7	219
89	Neuropeptide Y-Mediated Long-Term Depression of Excitatory Activity in Suprachiasmatic Nucleus Neurons. Journal of Neuroscience, 1996, 16, 5883-5895.	1.7	100
90	Neuropeptide Y Depresses GABA-Mediated Calcium Transients in Developing Suprachiasmatic Nucleus Neurons: A Novel Form of Calcium Long-Term Depression. Journal of Neuroscience, 1996, 16, 3521-3533.	1.7	58

#ARTICLEIFCITATIONS91Growth cone calcium elevation by GABA., 1996, 372, 167-175.57