Jiqian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5996682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Utilization of Surfactant-Stabilized Foam for Enhanced Oil Recovery by Adding Nanoparticles. Energy & Fuels, 2014, 28, 2384-2394.	5.1	302
2	Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471, 54-64.	4.7	169
3	Selfâ€Assembly of Short Peptide Amphiphiles: The Cooperative Effect of Hydrophobic Interaction and Hydrogen Bonding. Chemistry - A European Journal, 2011, 17, 13095-13102.	3.3	144
4	Left or Right: How Does Amino Acid Chirality Affect the Handedness of Nanostructures Self-Assembled from Short Amphiphilic Peptides?. Journal of the American Chemical Society, 2017, 139, 4185-4194.	13.7	139
5	Hydrophobic-Region-Induced Transitions in Self-Assembled Peptide Nanostructures. Langmuir, 2009, 25, 4115-4123.	3.5	137
6	Tuning the Self-Assembly of Short Peptides via Sequence Variations. Langmuir, 2013, 29, 13457-13464.	3.5	132
7	Self-Assembly of Short Aβ(16â^22) Peptides: Effect of Terminal Capping and the Role of Electrostatic Interaction. Langmuir, 2011, 27, 2723-2730.	3.5	108
8	Site-specific MOF-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials, 2020, 245, 119983.	11.4	94
9	Nanoribbons self-assembled from short peptides demonstrate the formation of polar zippers between β-sheets. Nature Communications, 2018, 9, 5118.	12.8	89
10	Immobilization of Lipases on Alkyl Silane Modified Magnetic Nanoparticles: Effect of Alkyl Chain Length on Enzyme Activity. PLoS ONE, 2012, 7, e43478.	2.5	76
11	Rational design and self-assembly of short amphiphilic peptides and applications. Current Opinion in Colloid and Interface Science, 2018, 35, 112-123.	7.4	73
12	The Properties of Asphaltenes and Their Interaction with Amphiphiles. Energy & Fuels, 2009, 23, 3625-3631.	5.1	69
13	Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coordination Chemistry Reviews, 2020, 421, 213418.	18.8	67
14	Solvent Controlled Structural Transition of KI ₄ K Self-Assemblies: from Nanotubes to Nanofibrils. Langmuir, 2015, 31, 12975-12983.	3.5	59
15	Rational design, properties, and applications of biosurfactants: a short review of recent advances. Current Opinion in Colloid and Interface Science, 2020, 45, 57-67.	7.4	53
16	Interfacial study on the interaction between hydrophobic nanoparticles and ionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488, 20-27.	4.7	52
17	Influence of Ovalbumin on CaCO ₃ Precipitation during <i>in Vitro</i> Biomineralization. Journal of Physical Chemistry B, 2010, 114, 5301-5308.	2.6	50
18	Aquathermolysis of Heavy Crude Oil with Amphiphilic Nickel and Iron Catalysts. Energy & Fuels, 2014, 28, 7440-7447.	5.1	47

#	Article	IF	CITATIONS
19	Short peptide-directed synthesis of one-dimensional platinum nanostructures with controllable morphologies. Scientific Reports, 2013, 3, 2565.	3.3	45
20	Controlling the Diameters of Nanotubes Selfâ€Assembled from Designed Peptide Bolaphiles. Small, 2018, 14, e1703216.	10.0	45
21	Interaction between Surfactants and SiO ₂ Nanoparticles in Multiphase Foam and Its Plugging Ability. Energy & Fuels, 2017, 31, 408-417.	5.1	37
22	Peptide Self-Assembled Nanostructures with Distinct Morphologies and Properties Fabricated by Molecular Design. ACS Applied Materials & Interfaces, 2017, 9, 39174-39184.	8.0	36
23	Rationally designed short cationic α-helical peptides with selective anticancer activity. Journal of Colloid and Interface Science, 2022, 607, 488-501.	9.4	36
24	Study on the polarity, solubility, and stacking characteristics of asphaltenes. Fuel, 2014, 128, 366-372.	6.4	35
25	Designed Short RGD Peptides for One-Pot Aqueous Synthesis of Integrin-Binding CdTe and CdZnTe Quantum Dots. ACS Applied Materials & Interfaces, 2012, 4, 6362-6370.	8.0	34
26	Study on adhesion of asphalt using AFM tip modified with mineral particles. Construction and Building Materials, 2019, 207, 422-430.	7.2	32
27	Phase Separation and Colloidal Stability Change of Karamay Residue Oil during Thermal Reaction. Energy & Fuels, 2009, 23, 3002-3007.	5.1	31
28	Amphiphilic short peptide modulated wormlike micelle formation with pH and metal ion dual-responsive properties. RSC Advances, 2015, 5, 95604-95612.	3.6	29
29	Tuning Oneâ€Dimensional Nanostructures of Bola‣ike Peptide Amphiphiles by Varying the Hydrophilic Amino Acids. Chemistry - A European Journal, 2016, 22, 11394-11404.	3.3	28
30	Rational Design of a Robust Antibody-like Small-Molecule Inhibitor Nanoplatform for Enhanced Photoimmunotherapy. ACS Applied Materials & Interfaces, 2020, 12, 40085-40093.	8.0	28
31	Unexpected Role of Achiral Glycine in Determining the Suprastructural Handedness of Peptide Nanofibrils. ACS Nano, 2021, 15, 10328-10341.	14.6	28
32	Properties of multi-phase foam and its flow behavior in porous media. RSC Advances, 2015, 5, 67676-67689.	3.6	27
33	The effect of surfactant adsorption on surface wettability and flow resistance in slit nanopore: A molecular dynamics study. Journal of Colloid and Interface Science, 2018, 513, 379-388.	9.4	26
34	Rheological behaviors of a novel exopolysaccharide produced by Sphingomonas WG and the potential application in enhanced oil recovery. International Journal of Biological Macromolecules, 2020, 162, 1816-1824.	7.5	26
35	pH-Responsive Self-Assemblies from the Designed Folic Acid-Modified Peptide Drug for Dual-Targeting Delivery. Langmuir, 2021, 37, 339-347.	3.5	25
36	Monolayer wall nanotubes self-assembled from short peptide bolaamphiphiles. Journal of Colloid and Interface Science, 2021, 583, 553-562.	9.4	23

#	Article	IF	CITATIONS
37	Copper(II)â€Mediated Selfâ€Assembly of Hairpin Peptides and Templated Synthesis of CuS Nanowires. Chemistry - an Asian Journal, 2015, 10, 1953-1958.	3.3	22
38	Modulation of Antimicrobial Peptide Conformation and Aggregation by Terminal Lipidation and Surfactants. Langmuir, 2020, 36, 1737-1744.	3.5	22
39	Ordered Packing of β-Sheet Nanofibrils into Nanotubes: Multi-hierarchical Assembly of Designed Short Peptides. Nano Letters, 2021, 21, 10199-10207.	9.1	22
40	Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective. Journal of Colloid and Interface Science, 2019, 548, 244-254.	9.4	21
41	Thermal cracking, aquathermolysis, and their upgrading effects of Mackay River oil sand. Journal of Petroleum Science and Engineering, 2021, 201, 108473.	4.2	21
42	Effect of Aggregation and Adsorption Behavior on the Flow Resistance of Surfactant Fluid on Smooth and Rough Surfaces: A Many-Body Dissipative Particle Dynamics Study. Langmuir, 2019, 35, 8110-8120.	3.5	20
43	Near-infrared light-sensitive liposomes for controlled release. RSC Advances, 2016, 6, 81245-81249.	3.6	18
44	Hollow petal-like Co3O4 nanoflakes as bifunctional electrocatalysts through template-free protocol and structural controlled kinetics in gas evolution. Electrochimica Acta, 2019, 318, 949-956.	5.2	18
45	Interfacial adsorption of lipopeptidesurfactants at the silica/water interface studied by neutron reflection. Soft Matter, 2011, 7, 1777-1788.	2.7	17
46	Self-assembly of amphiphilic peptides: Effects of the single-chain-to-gemini structural transition and the side chain groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 263-270.	4.7	16
47	Patterning the neuronal cells via inkjet printing of self-assembled peptides on silk scaffolds. Progress in Natural Science: Materials International, 2020, 30, 686-696.	4.4	16
48	Light- and pH-Controlled Hierarchical Coassembly of Peptide Amphiphiles. Langmuir, 2019, 35, 9841-9847.	3.5	15
49	Dynamic Adsorption and Structure of Interfacial Bilayers Adsorbed from Lipopeptide Surfactants at the Hydrophilic Silicon/Water Interface: Effect of the Headgroup Length. Langmuir, 2011, 27, 8798-8809.	3.5	14
50	Influence of Conventional Surfactants on the Self-Assembly of a Bola Type Amphiphilic Peptide. Langmuir, 2017, 33, 5446-5455.	3.5	14
51	Correlation between the secondary structure and surface activity of β-sheet forming cationic amphiphilic peptides and their anticancer activity. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112165.	5.0	14
52	Tuning self-assembled morphology of the Aβ(16–22) peptide by substitution of phenylalanine residues. Colloids and Surfaces B: Biointerfaces, 2016, 147, 116-123.	5.0	13
53	Characterization of the biosynthetic pathway of nucleotide sugar precursor UDP-glucose during sphingan WL gum production in Sphingomonas sp. WG. Journal of Biotechnology, 2019, 302, 1-9.	3.8	13
54	Mechanism Discussion of Nanofluid for Enhanced Oil Recovery: Adhesion Work Evaluation and Direct Force Measurements between Nanoparticles and Surfaces. Energy & Fuels, 2018, 32, 11390-11397.	5.1	12

#	Article	IF	CITATIONS
55	Broad Spectral Response Z-Scheme Three-Dimensional Ordered Macroporous Carbon Quantum Dots/TiO ₂ /g-C ₃ N ₄ Composite for Boosting Photocatalysis. Langmuir, 2022, 38, 4839-4847.	3.5	12
56	UV and NIR dual-responsive self-assembly systems based on a novel coumarin derivative surfactant. Soft Matter, 2017, 13, 6700-6708.	2.7	11
57	Anticancer Properties of Lipidated Peptide Drug Supramolecular Self-Assemblies with Enhanced Stability. ACS Applied Bio Materials, 2019, 2, 5995-6003.	4.6	11
58	Ordered Nanofibers Fabricated from Hierarchical Selfâ€Assembling Processes of Designed αâ€Helical Peptides. Small, 2020, 16, e2003945.	10.0	11
59	Interfacial assembly of lipopeptide surfactants on octyltrimethoxysilane-modified silica surface. Soft Matter, 2013, 9, 9684-9691.	2.7	10
60	Study on the dipole moment of asphaltene molecules through dielectric measuring. Fuel, 2015, 140, 609-615.	6.4	10
61	Preparation and characterization of \hat{l}^2 -casein stabilized lipopeptide lyotropic liquid crystal nanoparticles for delivery of doxorubicin. Soft Matter, 2019, 15, 9011-9017.	2.7	10
62	Short peptide mediated self-assembly of platinum nanocrystals with selective spreading property. RSC Advances, 2016, 6, 58099-58105.	3.6	9
63	Effects of Conventional Surfactants on the Activity of Designed Antimicrobial Peptide. Langmuir, 2020, 36, 3531-3539.	3.5	9
64	Synergistic effects of microbial polysaccharide mixing with polymer and nonionic surfactant on rheological behavior and enhanced oil recovery. Journal of Petroleum Science and Engineering, 2022, 208, 109746.	4.2	9
65	Effects of Fe/carbon black, Ni/carbon black catalysts on hydrocracking reaction of residual oil. Journal of Fuel Chemistry and Technology, 2007, 35, 558-562.	2.0	8
66	Platinum-Ion-Mediated Self-Assembly of Hairpin Peptides and Synthesis of Platinum Nanostructures. Langmuir, 2019, 35, 5617-5625.	3.5	8
67	Catalytic aquathermolysis of Mackay River bitumen with different types of Mo-based catalysts. Fuel, 2022, 326, 125134.	6.4	8
68	Coâ€N Catalysts Synthesized viaPyrolyzing the Ionic Liquids Solution Dissolved with Casein and Cobalt Porphyrin for Ethylbenzene Oxidation. ChemistrySelect, 2017, 2, 4255-4260.	1.5	7
69	Efficient Expression and Immunoaffinity Purification of Human Trace Amine-Associated Receptor 5 from E. coli Cell-Free System. Protein and Peptide Letters, 2013, 20, 473-480.	0.9	7
70	Evaluation of Cell-free Expression System for the Production of Soluble and Functional Human GPCR N-formyl Peptide Receptors. Protein and Peptide Letters, 2013, 20, 1272-1279.	0.9	7
71	Efficient expression and immunoaffinity purification of human trace amine-associated receptor 5 from E. coli cell-free system. Protein and Peptide Letters, 2013, 20, 473-80.	0.9	7
72	Rationally designed cationic amphiphilic peptides for selective gene delivery to cancer cells. International Journal of Pharmaceutics, 2022, 617, 121619.	5.2	7

#	Article	IF	CITATIONS
73	Efficient Expression and Immunoaffinity Purification of Human Trace Amine-Associated Receptor 5 from E. coli Cell-Free System. Protein and Peptide Letters, 2013, 20, 473-480.	0.9	6
74	Solubilization and Stabilization of Isolated Photosystem I Complex with Lipopeptide Detergents. PLoS ONE, 2013, 8, e76256.	2.5	6
75	Fusion and leakage of catanionic surfactant vesicles induced by α-helical peptides: the effect of membrane charge. RSC Advances, 2016, 6, 103224-103231.	3.6	6
76	An efficient production of a novel carbohydrate polymer Sphingan WL. Journal of Chemical Technology and Biotechnology, 2018, 93, 3472-3482.	3.2	6
77	Stabilization of an intermolecular i-motif by lipid modification of cytosine-oligodeoxynucleotides. Organic and Biomolecular Chemistry, 2018, 16, 4857-4863.	2.8	6
78	Dualâ€Responsive Viscoelastic Lyotropic Liquid Crystal Fluids to Control the Diffusion of Hydrophilic and Hydrophobic Molecules. ChemPhysChem, 2016, 17, 2079-2087.	2.1	5
79	Virus-like supramolecular assemblies formed by cooperation of base pairing interaction and peptidic association. Science China Chemistry, 2016, 59, 310-315.	8.2	5
80	The Impact of Ionic Liquid and Nanoparticles on Stabilizing Foam for Enhanced Oil Recovery. ChemistrySelect, 2018, 3, 12461-12468.	1.5	5
81	Cuprous oxide nanostructures tuned by histidine-containing peptides and their photocatalytic activities. Applied Surface Science, 2018, 453, 173-181.	6.1	4
82	One- and two-photon responsive injectable nano-bundle biomaterials from co-assembled lipopeptides for controlling molecular diffusion. Soft Matter, 2019, 15, 6476-6484.	2.7	4
83	Preparation and Properties of Semi-Self-Assembled Lipopeptide Vesicles. Langmuir, 2019, 35, 13174-13181.	3.5	4
84	The Function of β-1,4-Glucuronosyltransferase WelK in the Sphingan WL Gum Biosynthesis Process in Marine Sphingomonas sp. WG. Marine Biotechnology, 2021, 23, 39-50.	2.4	4
85	Selfâ€∎ssembly of hairpin peptides mediated by Cu(II) ion: Effect of amino acid sequence. Peptide Science, 2021, 113, e24208.	1.8	4
86	Coassembly Behavior and Rheological Properties of a Î ² -Hairpin Peptide with Dicarboxylates. Langmuir, 2021, 37, 11657-11664.	3.5	4
87	Tuning the shell structure of peptide nanotubes with sodium tartrate: From monolayer to bilayer. Journal of Colloid and Interface Science, 2022, 608, 1685-1695.	9.4	4
88	Enzymatic degradation, antioxidant and rheological properties of a sphingan WL gum from Sphingomonas sp. WG. International Journal of Biological Macromolecules, 2022, 210, 622-629.	7.5	4
89	Effects of monosaccharide composition and acetyl content on the rheological properties of sphingan WL. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129609.	4.7	4
90	Coordination of di-Histidine-containing hexapeptides with cupric ion and its application in electrochemical detection. Journal of Molecular Liquids, 2021, 341, 117420.	4.9	3

#	Article	IF	CITATIONS
91	Co-assembly behaviors and rheological properties of a salt-free catanionic tetrapeptide/surfactant system in water. Journal of Molecular Liquids, 2017, 243, 406-413.	4.9	2
92	Construction and Characterization of a Mirrorâ€Image <scp>l</scp> â€DNA iâ€Motif. ChemBioChem, 2020, 21, 94-97.	2.6	2
93	Upgrading of Mackay River bitumen through co-aquathermolysis with lignin under mild conditions. Journal of Petroleum Science and Engineering, 2022, 214, 110489.	4.2	2
94	T4-Lysozyme Fusion for the Production of Human Formyl Peptide Receptors for Structural Determination. Applied Biochemistry and Biotechnology, 2014, 172, 2571-2581.	2.9	1
95	Synthesis of DNAs with succinamide internucleoside linkages and its application in discrimination of T-C mismatch. Polymer, 2021, 212, 123162.	3.8	1
96	Hybrid Histidine Kinase WelA of Sphingomonas sp. WG Contributes to WL Gum Biosynthesis and Motility. Frontiers in Microbiology, 2022, 13, 792315.	3.5	1
97	Construction of NIR etchable nanoparticles via co-assembly strategy for appointed delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129395.	4.7	1
98	Identification of the Key Enzymes in WL Gum Biosynthesis and Critical Composition in Viscosity Control. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	0