Jos A G Van Strijp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/599667/publications.pdf

Version: 2024-02-01

163 papers 11,818 citations

20759 60 h-index 30848 102 g-index

179 all docs

179 docs citations

179 times ranked 10491 citing authors

#	Article	IF	CITATIONS
1	Human monoclonal antibodies against Staphylococcus aureus surface antigens recognize in vitro and in vivo biofilm. ELife, 2022, 11 , .	2.8	16
2	Natural Human Immunity Against Staphylococcal Protein A Relies on Effector Functions Triggered by IgG3. Frontiers in Immunology, 2022, 13, 834711.	2.2	9
3	Use of Flow Cytometry to Evaluate Phagocytosis of Staphylococcus aureus by Human Neutrophils. Frontiers in Immunology, 2021, 12, 635825.	2.2	35
4	Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	52
5	Impact of Glycan Linkage to <i>Staphylococcus aureus</i> Wall Teichoic Acid on Langerin Recognition and Langerhans Cell Activation. ACS Infectious Diseases, 2021, 7, 624-635.	1.8	16
6	Bacterial protein domains with a novel Igâ€like fold target human CEACAM receptors. EMBO Journal, 2021, 40, e106103.	3.5	16
7	Human-specific staphylococcal virulence factors enhance pathogenicity in a humanised zebrafish C5a receptor model. Journal of Cell Science, 2021, 134, .	1.2	2
8	Virulence Gene Expression of Staphylococcus aureus in Human Skin. Frontiers in Microbiology, 2021, 12, 692023.	1.5	13
9	C1q binding to surface-bound IgG is stabilized by C1r ₂ s ₂ proteases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
10	Signal inhibitory receptor on leukocytesâ€1 recognizes bacterial and endogenous amphipathic αâ€helical peptides. FASEB Journal, 2021, 35, e21875.	0.2	10
11	A Common Genetic Variation in Langerin (CD207) Compromises Cellular Uptake of <i>Staphylococcus aureus</i> . Journal of Innate Immunity, 2020, 12, 191-200.	1.8	9
12	Pre-existing antibody-mediated adverse effects prevent the clinical development of a bacterial anti-inflammatory protein. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	2
13	Combating Implant Infections: Shifting Focus from Bacteria to Host. Advanced Materials, 2020, 32, e2002962.	11.1	119
14	Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Letters, 2020, 594, 2556-2569.	1.3	66
15	Host–Receptor Post-Translational Modifications Refine Staphylococcal Leukocidin Cytotoxicity. Toxins, 2020, 12, 106.	1.5	9
16	The Orphan Immune Receptor LILRB3 Modulates Fc Receptor–Mediated Functions of Neutrophils. Journal of Immunology, 2020, 204, 954-966.	0.4	21
17	Studying Staphylococcal Leukocidins: A Challenging Endeavor. Frontiers in Microbiology, 2020, 11, 611.	1.5	32
18	Do not discard Staphylococcus aureus WTA as a vaccine antigen. Nature, 2019, 572, E1-E2.	13.7	35

#	Article	IF	Citations
19	The Câ€type lectin receptor MGL senses <i>N</i> à€acetylgalactosamine on the unique <i>Staphylococcus aureus</i> ST395 wall teichoic acid. Cellular Microbiology, 2019, 21, e13072.	1.1	26
20	Langerhans Cells Sense <i>Staphylococcus aureus</i> Wall Teichoic Acid through Langerin To Induce Inflammatory Responses. MBio, 2019, 10, .	1.8	46
21	A transgenic zebrafish line for in vivo visualisation of neutrophil myeloperoxidase. PLoS ONE, 2019, 14, e0215592.	1.1	42
22	Immune Evasion by <i>Staphylococcus aureus </i> . Microbiology Spectrum, 2019, 7, .	1.2	131
23	Immune Evasion by Staphylococcus aureus. , 2019, , 618-639.		5
24	<i>Staphylococcus aureus</i> toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration. FASEB Journal, 2019, 33, 3807-3824.	0.2	18
25	Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains. Journal of Biological Chemistry, 2018, 293, 4468-4477.	1.6	34
26	A structurally dynamic N-terminal region drives function of the staphylococcal peroxidase inhibitor (SPIN). Journal of Biological Chemistry, 2018, 293, 2260-2271.	1.6	16
27	Identification and structural characterization of a novel myeloperoxidase inhibitor from Staphylococcus delphini. Archives of Biochemistry and Biophysics, 2018, 645, 1-11.	1.4	8
28	Molecular basis determining species specificity for TLR2 inhibition by staphylococcal superantigen-like protein 3 (SSL3). Veterinary Research, 2018, 49, 115.	1.1	5
29	Complement Factor H and Apolipoprotein E Participate in Regulation of Inflammation in THP-1 Macrophages. Frontiers in Immunology, 2018, 9, 2701.	2.2	27
30	Streptococcal Lancefield polysaccharides are critical cell wall determinants for human Group IIA secreted phospholipase A2 to exert its bactericidal effects. PLoS Pathogens, 2018, 14, e1007348.	2.1	16
31	Human skin commensals augment Staphylococcus aureus pathogenesis. Nature Microbiology, 2018, 3, 881-890.	5.9	80
32	Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton–Valentine leukocidin. Nature Microbiology, 2018, 3, 708-717.	5.9	63
33	Staphylococcal superantigen-like protein 13 activates neutrophils via formyl peptide receptor 2. Cellular Microbiology, 2018, 20, e12941.	1.1	20
34	Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Scientific Reports, 2017, 7, 40660.	1.6	47
35	Fluorescent reporters for markerless genomic integration in Staphylococcus aureus. Scientific Reports, 2017, 7, 43889.	1.6	44
36	Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nature Reviews Microbiology, 2017, 15, 435-447.	13.6	267

#	Article	IF	CITATIONS
37	The TLR2 Antagonist Staphylococcal Superantigen-Like Protein 3 Acts as a Virulence Factor to Promote Bacterial Pathogenicity in vivo. Journal of Innate Immunity, 2017, 9, 561-573.	1.8	22
38	Immune evasion by a staphylococcal inhibitor of myeloperoxidase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9439-9444.	3.3	76
39	Serine-Aspartate Repeat Protein D Increases Staphylococcus aureus Virulence and Survival in Blood. Infection and Immunity, 2017, 85, .	1.0	41
40	Staphylococcal protein Ecb impairs complement receptor-1 mediated recognition of opsonized bacteria. PLoS ONE, 2017, 12, e0172675.	1,1	19
41	Staphylococcal Superantigen-Like Protein 1 and 5 (SSL1 & SSL5) Limit Neutrophil Chemotaxis and Migration through MMP-Inhibition. International Journal of Molecular Sciences, 2016, 17, 1072.	1.8	45
42	Staphylococcus aureusprotects its immune-evasion proteins against degradation by neutrophil serine proteases. Cellular Microbiology, 2016, 18, 536-545.	1.1	18
43	LukMF′ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis. Scientific Reports, 2016, 6, 37759.	1.6	55
44	Classical and lectin complement pathway activity in polyneuropathy associated with IgM monoclonal gammopathy. Journal of Neuroimmunology, 2016, 290, 76-79.	1.1	3
45	<i>Staphylococcus aureus</i> SaeR/S-regulated factors reduce human neutrophil reactive oxygen species production. Journal of Leukocyte Biology, 2016, 100, 1005-1010.	1.5	33
46	Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Current Topics in Microbiology and Immunology, 2015, 409, 441-489.	0.7	36
47	Bright Fluorescent Streptococcus pneumoniae for Live-Cell Imaging of Host-Pathogen Interactions. Journal of Bacteriology, 2015, 197, 807-818.	1.0	85
48	Differential Interaction of the Staphylococcal Toxins Panton–Valentine Leukocidin and γ-Hemolysin CB with Human C5a Receptors. Journal of Immunology, 2015, 195, 1034-1043.	0.4	69
49	Effective Neutrophil Phagocytosis of <i>Aspergillus</i> <i>fumigatus</i> Is Mediated by Classical Pathway Complement Activation. Journal of Innate Immunity, 2015, 7, 364-374.	1.8	39
50	Versatile vector suite for the extracytoplasmic production and purification of heterologous His-tagged proteins in Lactococcus lactis. Applied Microbiology and Biotechnology, 2015, 99, 9037-9048.	1.7	14
51	Immunization routes in cattle impact the levels and neutralizing capacity of antibodies induced against S. aureus immune evasion proteins. Veterinary Research, 2015, 46, 115.	1.1	23
52	Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11018-11023.	3.3	76
53	Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes. Cell Host and Microbe, 2015, 18, 363-370.	5.1	88
54	Complement Factor H Binds to Human Serum Apolipoprotein E and Mediates Complement Regulation on High Density Lipoprotein Particles. Journal of Biological Chemistry, 2015, 290, 28977-28987.	1.6	31

#	Article	IF	CITATIONS
55	Staphylococcus Aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes. Blood, 2015, 126, 162-162.	0.6	O
56	<i>Sti>Staphylococcus aureus</i> dentified using secretome phage display. Cellular Microbiology, 2014, 16, 1646-1665.	1.1	30
57	Pathogens under stress. FEMS Microbiology Reviews, 2014, 38, 1089-1090.	3.9	2
58	Neutrophil-Mediated Phagocytosis of Staphylococcus aureus. Frontiers in Immunology, 2014, 5, 467.	2.2	145
59	Entrapment exploited. Trends in Microbiology, 2014, 22, 55-57.	3.5	2
60	The staphylococcal toxins \hat{I}^3 -haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nature Communications, 2014, 5, 5438.	5.8	126
61	<i>Pseudomonas syringae</i> Evades Host Immunity by Degrading Flagellin Monomers with Alkaline Protease AprA. Molecular Plant-Microbe Interactions, 2014, 27, 603-610.	1.4	68
62	Recognition of LPS by TLR4: Potential for Anti-Inflammatory Therapies. Marine Drugs, 2014, 12, 4260-4273.	2.2	54
63	A <i> Staphylococcus aureus</i> TIR Domain Protein Virulence Factor Blocks TLR2-Mediated NF-κB Signaling. Journal of Innate Immunity, 2014, 6, 485-498.	1.8	64
64	Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cellular Microbiology, 2013, 15, 1955-1968.	1,1	96
65	Inhibition of formyl peptide receptor in high-grade astrocytoma by CHemotaxis Inhibitory Protein of S. aureus. British Journal of Cancer, 2013, 108, 587-596.	2.9	22
66	Neutrophils Versus < i > Staphylococcus aureus < /i>: A Biological Tug of War. Annual Review of Microbiology, 2013, 67, 629-650.	2.9	259
67	Intravital two-photon microscopy of host-pathogen interactions in a mouse model of <i>Staphylococcus aureus < /i>skin abscess formation. Cellular Microbiology, 2013, 15, 891-909.</i>	1.1	65
68	Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cellular Microbiology, 2013, 15, 1427-1437.	1,1	158
69	Pneumococcal immune evasion: ZmpC inhibits neutrophil influx. Cellular Microbiology, 2013, 15, n/a-n/a.	1.1	23
70	The Staphylococcal Toxin Panton-Valentine Leukocidin Targets Human C5a Receptors. Cell Host and Microbe, 2013, 13, 584-594.	5.1	250
71	EsiB, a Novel Pathogenic Escherichia coli Secretory Immunoglobulin A-Binding Protein Impairing Neutrophil Activation. MBio, 2013, 4, .	1.8	22
72	<i>Staphylococcus aureus</i> Formyl Peptide Receptorâ€"like 1 Inhibitor (FLIPr) and Its Homologue FLIPr-like Are Potent FcγR Antagonists That Inhibit IgG-Mediated Effector Functions. Journal of Immunology, 2013, 191, 353-362.	0.4	46

#	Article	IF	CITATIONS
73	Staphylococcal Ecb Protein and Host Complement Regulator Factor H Enhance Functions of Each Other in Bacterial Immune Evasion. Journal of Immunology, 2013, 191, 1775-1784.	0.4	26
74	Staphylococcus aureus Elaborates Leukocidin AB To Mediate Escape from within Human Neutrophils. Infection and Immunity, 2013, 81, 1830-1841.	1.0	119
75	Studying Interactions of Staphylococcus aureus with Neutrophils by Flow Cytometry and Time Lapse Microscopy. Journal of Visualized Experiments, 2013, , e50788.	0.2	20
76	Inactivation of Staphylococcal Phenol Soluble Modulins by Serum Lipoprotein Particles. PLoS Pathogens, 2012, 8, e1002606.	2.1	106
77	<i>Staphylococcus aureus</i> Staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO Journal, 2012, 31, 3607-3619.	3.5	88
78	Evasion of Toll-like receptor 2 activation by staphylococcal superantigen-like protein 3. Journal of Molecular Medicine, 2012, 90, 1109-1120.	1.7	81
79	Membrane attack complex deposition on gram-positive bacteria. Immunobiology, 2012, 217, 1187.	0.8	1
80	Inhibition of Pseudomonas aeruginosa Virulence: Characterization of the AprA–AprI Interface and Species Selectivity. Journal of Molecular Biology, 2012, 415, 573-583.	2.0	33
81	Fusion of the Fc part of human IgG1 to CD14 enhances its binding to Gram-negative bacteria and mediates phagocytosis by Fc receptors of neutrophils. Immunology Letters, 2012, 146, 31-39.	1.1	2
82	Pseudomonas aeruginosaAlkaline Protease Blocks Complement Activation via the Classical and Lectin Pathways. Journal of Immunology, 2012, 188, 386-393.	0.4	134
83	Identification of an immunomodulating metalloprotease of Pseudomonas aeruginosa (IMPa). Cellular Microbiology, 2012, 14, 902-913.	1.1	35
84	<i>Staphylococcus aureus</i> Metalloprotease Aureolysin Cleaves Complement C3 To Mediate Immune Evasion. Journal of Immunology, 2011, 186, 6445-6453.	0.4	155
85	Alkaline protease of Pseudomonas aeruginosa evades innate immunity by blocking activation of complement C2 and Toll-like receptor 5. Molecular Immunology, 2011, 48, 1670-1671.	1.0	0
86	Staphylococcus aureus proteases targeting C3 and chemokine receptors. Molecular Immunology, 2011, 48, 1702.	1.0	0
87	Membrane Attack Complex deposition on Gram-positive bacteria. Molecular Immunology, 2011, 48, 1703.	1.0	0
88	Neutralization of Neisseria meningitidis outer membrane vesicles. Inflammation Research, 2011, 60, 801-805.	1.6	4
89	Molecular battle between host and bacterium: recognition in innate immunity. Journal of Molecular Recognition, 2011, 24, 1077-1086.	1.1	22
90	Pseudomonas Evades Immune Recognition of Flagellin in Both Mammals and Plants. PLoS Pathogens, 2011, 7, e1002206.	2.1	124

#	Article	IF	Citations
91	Abstract 1672: Mitochondrial and bacterial peptides act on the formyl peptide receptor (FPR) to promote migration and proliferation in high grade glioblastoma cells., 2011,,.		0
92	Complement inhibition by gram-positive pathogens: molecular mechanisms and therapeutic implications. Journal of Molecular Medicine, 2010, 88, 115-120.	1.7	101
93	Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genomics, 2010, 11, 376.	1.2	185
94	How microorganisms avoid phagocyte attraction. FEMS Microbiology Reviews, 2010, 34, 395-414.	3.9	70
95	Molecular mechanisms of complement evasion: learning from staphylococci and meningococci. Nature Reviews Microbiology, 2010, 8, 393-399.	13.6	110
96	Functional basis for complement evasion by staphylococcal superantigen-like 7. Cellular Microbiology, 2010, 12, 1506-1516.	1.1	100
97	Staphylococcal Complement Inhibitor Modulates Phagocyte Responses by Dimerization of Convertases. Journal of Immunology, 2010, 184, 420-425.	0.4	34
98	Convertase Inhibitory Properties of Staphylococcal Extracellular Complement-binding Protein. Journal of Biological Chemistry, 2010, 285, 14973-14979.	1.6	36
99	Operon structure of Staphylococcus aureus. Nucleic Acids Research, 2010, 38, 3263-3274.	6.5	28
100	Directed evolution of chemotaxis inhibitory protein of Staphylococcus aureus generates biologically functional variants with reduced interaction with human antibodies. Protein Engineering, Design and Selection, 2010, 23, 91-101.	1.0	11
101	Staphylococcal SSL5 Binding to Human Leukemia Cells Inhibits Cell Adhesion to Endothelial Cells and Platelets. Analytical Cellular Pathology, 2010, 32, 1-10.	0.7	4
102	Staphylococcal SSL5 binding to human leukemia cells inhibits cell adhesion to endothelial cells and platelets. Cellular Oncology, 2010, 32, 1-10.	1.9	14
103	Structure of the Tyrosine-sulfated C5a Receptor N Terminus in Complex with Chemotaxis Inhibitory Protein of Staphylococcus aureus. Journal of Biological Chemistry, 2009, 284, 12363-12372.	1.6	40
104	A Homolog of Formyl Peptide Receptor-Like 1 (FPRL1) Inhibitor from <i>Staphylococcus aureus</i> (FPRL1 Inhibitory Protein) That Inhibits FPRL1 and FPR. Journal of Immunology, 2009, 183, 6569-6578.	0.4	68
105	Identification of conformational epitopes for human IgG on Chemotaxis inhibitory protein of Staphylococcus aureus. BMC Immunology, 2009, 10, 13.	0.9	16
106	Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nature Immunology, 2009, 10, 721-727.	7.0	205
107	A general sequence independent solid phase method for the site specific synthesis of multiple sulfated-tyrosine containing peptides. Chemical Communications, 2009, , 2999.	2.2	23
108	Staphylococcal Superantigen-like 10 Inhibits CXCL12-Induced Human Tumor Cell Migration. Neoplasia, 2009, 11, 333-344.	2.3	91

#	Article	IF	Citations
109	Staphylococcal SSL5 inhibits leukocyte activation by chemokines and anaphylatoxins. Blood, 2009, 113, 328-337.	0.6	98
110	Innate Immune Evasion by Staphylococci. Advances in Experimental Medicine and Biology, 2009, 666, 19-31.	0.8	13
111	Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin–mediated neutrophil rolling. Blood, 2007, 109, 2936-2943.	0.6	163
112	Bacterial complement evasion. Molecular Immunology, 2007, 44, 23-32.	1.0	171
113	Staphylococcal Complement Inhibitor: Structure and Active Sites. Journal of Immunology, 2007, 179, 2989-2998.	0.4	74
114	Staphylococcal complement evasion by various convertase-blocking molecules. Journal of Experimental Medicine, 2007, 204, 2461-2471.	4.2	208
115	Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cellular Microbiology, 2006, 8, 1282-1293.	1.1	126
116	Clumping factor A of Staphylococcus aureusinhibits phagocytosis by human polymorphonuclear leucocytes. FEMS Microbiology Letters, 2006, 258, 290-296.	0.7	101
117	The Skn7 response regulator of Cryptococcus neoformansis involved in oxidative stress signalling and augments intracellular survival in endothelium. FEMS Yeast Research, 2006, 6, 652-661.	1.1	40
118	A New Staphylococcal Anti-Inflammatory Protein That Antagonizes the Formyl Peptide Receptor-Like 1. Journal of Immunology, 2006, 177, 8017-8026.	0.4	112
119	The Innate Immune Modulators Staphylococcal Complement Inhibitor and Chemotaxis Inhibitory Protein of Staphylococcus aureus Are Located on \hat{I}^2 -Hemolysin-Converting Bacteriophages. Journal of Bacteriology, 2006, 188, 1310-1315.	1.0	511
120	Anti-opsonic properties of staphylokinase. Microbes and Infection, 2005, 7, 476-484.	1.0	192
121	The role of tumour necrosis factor in the kinetics of lipopolysaccharide-mediated neutrophil priming in whole blood. Clinical and Experimental Immunology, 2005, 140, 65-72.	1.1	25
122	Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nature Immunology, 2005, 6, 920-927.	7.0	363
123	Residues 10–18 within the C5a Receptor N Terminus Compose a Binding Domain for Chemotaxis Inhibitory Protein of Staphylococcus aureus. Journal of Biological Chemistry, 2005, 280, 2020-2027.	1.6	69
124	The Structure of the C5a Receptor-blocking Domain of Chemotaxis Inhibitory Protein of Staphylococcus aureus is Related to a Group of Immune Evasive Molecules. Journal of Molecular Biology, 2005, 353, 859-872.	2.0	57
125	Staphylococcal innate immune evasion. Trends in Microbiology, 2005, 13, 596-601.	3 . 5	228
126	Chemotaxis Inhibitory Protein of Staphylococcus aureus, a Bacterial Antiinflammatory Agent. Journal of Experimental Medicine, 2004, 199, 687-695.	4.2	412

#	Article	IF	CITATIONS
127	Chemotaxis Inhibitory Protein of <i>Staphylococcus aureus</i> Binds Specifically to the C5a and Formylated Peptide Receptor. Journal of Immunology, 2004, 172, 6994-7001.	0.4	220
128	N-Terminal Residues of the Chemotaxis Inhibitory Protein of <i>Staphylococcus aureus</i> Are Essential for Blocking Formylated Peptide Receptor but Not C5a Receptor. Journal of Immunology, 2004, 173, 5704-5711.	0.4	76
129	Spare CD14 molecules on human monocytes enhance the sensitivity for low LPS concentrations. Immunology Letters, 2004, 93, 11-15.	1.1	7
130	Lipoteichoic acid from is a potent stimulus for neutrophil recruitment. Immunobiology, 2003, 208, 413-422.	0.8	65
131	MprF-Mediated Lysinylation of Phospholipids in Staphylococcus aureus Leads to Protection against Oxygen-Independent Neutrophil Killing. Infection and Immunity, 2003, 71, 546-549.	1.0	115
132	Lipoprotein metabolism in patients with severe sepsis. Critical Care Medicine, 2003, 31, 1359-1366.	0.4	290
133	Staphylococcus aureusStrains Lackingdâ€Alanine Modifications of Teichoic Acids Are Highly Susceptible to Human Neutrophil Killing and Are Virulence Attenuated in Mice. Journal of Infectious Diseases, 2002, 186, 214-219.	1.9	220
134	The role of high density lipoprotein in sepsis. Netherlands Journal of Medicine, 2001, 59, 102-110.	0.6	47
135	A novel flow cytometric assay to quantify soluble CD14 concentration in human serum. Cytometry, 2001, 45, 115-123.	1.8	8
136	Staphylococcus aureus Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with I-Lysine. Journal of Experimental Medicine, 2001, 193, 1067-1076.	4.2	706
137	Potent Inhibition of Neutrophil Migration by Cryptococcal Mannoprotein-4-Induced Desensitization. Journal of Immunology, 2001, 167, 3988-3995.	0.4	49
138	Diverging pathways for lipopolysaccharide and CD14 in human monocytes. Cytometry, 2000, 41, 279-288.	1.8	21
139	Functional human monoclonal antibodies of all isotypes constructed from phage display library-derived single-chain Fv antibody fragments. Journal of Immunological Methods, 2000, 239, 153-166.	0.6	74
140	Analysis of lipopolysaccharide (LPS)-binding characteristics of serum components using gel filtration of FITC-labeled LPS. Journal of Immunological Methods, 2000, 242, 79-89.	0.6	44
141	Serum Amyloid P Component Bound to Gram-Negative Bacteria Prevents Lipopolysaccharide-Mediated Classical Pathway Complement Activation. Infection and Immunity, 2000, 68, 1753-1759.	1.0	61
142	Modulation of Neutrophil Chemokine Receptors by Staphylococcus aureus Supernate. Infection and Immunity, 2000, 68, 5908-5913.	1.0	60
143	Serum Amyloid P Component Prevents High-Density Lipoprotein-Mediated Neutralization of Lipopolysaccharide. Infection and Immunity, 2000, 68, 4954-4960.	1.0	13
144	Effective Phagocytosis and Killing of Candida albicansvia Targeting Fcl³RI (CD64) or Fcl±RI (CD89) on Neutrophils. Journal of Infectious Diseases, 1999, 179, 661-669.	1.9	76

#	Article	IF	Citations
145	Lipopolysaccharide (LPS)-Binding Synthetic Peptides Derived from Serum Amyloid P Component Neutralize LPS. Infection and Immunity, 1999, 67, 2790-2796.	1.0	42
146	Affinities of Different Proteins and Peptides for Lipopolysaccharide as Determined by Biosensor Technology. Biochemical and Biophysical Research Communications, 1998, 252, 492-496.	1.0	42
147	Dual effects of soluble CD14 on LPS priming of neutrophils. Journal of Leukocyte Biology, 1997, 61, 173-178.	1.5	66
148	Quantitation of surface CD14 on human monocytes and neutrophils. Journal of Leukocyte Biology, 1997, 61, 721-728.	1.5	134
149	Staphylococcal culture supernates stimulate human phagocytes. Inflammation, 1997, 21, 541-551.	1.7	21
150	Surfactant protein A, but not surfactant protein D, is an opsonin for influenza A virus phagocytosis by rat alveolar macrophages. European Journal of Immunology, 1997, 27, 886-890.	1.6	95
151	Opsonic Activities of Surfactant Proteins A and D in Phagocytosis of Gram-Negative Bacteria by Alveolar Macrophages. Journal of Infectious Diseases, 1995, 172, 481-489.	1.9	168
152	Evaluation of a flow cytometric fluorescence quenching assay of phagocytosis of sensitized sheep erythrocytes by polymorphonuclear leukocytes. Cytometry, 1994, 17, 294-301.	1.8	131
153	Adjuvant Quil A improves protection in mice and enhances opsonic capacity of antisera induced by pneumococcal polysaccharide conjugate vaccines. Vaccine, 1994, 12, 1419-1422.	1.7	26
154	A flow cytometric rosetting assay for the analysis of Fc receptors and C3 receptors on HSV-infected cells. Journal of Immunological Methods, 1993, 157, 57-64.	0.6	7
155	Binding of HIV-1 to Human Follicular Dendritic Cells. Advances in Experimental Medicine and Biology, 1993, 329, 455-460.	0.8	3
156	Antibodies and complement enhance binding and uptake of HIV-1 by human monocytes. Aids, 1992, 6, 35-42.	1.0	32
157	Integrin modulating factor-1: A lipid that alters the function of leukocyte integrins. Cell, 1992, 68, 341-352.	13.5	168
158	Uncoupling of Oxidative and Non-Oxidative Mechanisms in Human Granulocyte-Mediated Cytotoxicity: Use of Cytoplasts and Cells From Chronic Granulomatous Disease Patient. Journal of Leukocyte Biology, 1990, 48, 359-366.	1.5	16
159	The use of a hybridization assay for the study of host defences against herpes simplex virus. Journal of Virological Methods, 1989, 26, 269-278.	1.0	0
160	Antibody-coated target cell membrane-induced chemiluminescence by human polymorphonuclear leukocytes. Journal of Immunological Methods, 1989, 118, 279-285.	0.6	5
161	Quantitation of Conjugate Formation Between Human Polymorphonuclear Leukocytes and Antibody-Coated Target Cells by Flow Cytometry: The Role of Fc Receptor and LFA-1 Antigen. Journal of Leukocyte Biology, 1989, 46, 467-475.	1.5	1
162	Measurement of antibody-mediated binding of human polymorphonuclear leukocytes to HSV-1 infected anchorage fibroblasts. Journal of Immunological Methods, 1986, 88, 101-107.	0.6	13

#	Article	IF	CITATIONS
163	Effect of human polymorphonuclear and mononuclear leukocytes on chromosomal and plasmid DNA of Escherichia coli. Role of acid DNase Journal of Clinical Investigation, 1984, 73, 1254-1262.	3.9	31