
Han-Yu Shih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5996650/publications.pdf Version: 2024-02-01

ΗΛΝ-ΥΠ SHIH

#	Article	IF	CITATIONS
1	Evolving Views of Long Noncoding RNAs and Epigenomic Control of Lymphocyte State and Memory. Cold Spring Harbor Perspectives in Biology, 2022, 14, a037952.	2.3	6
2	Stability and change in epigenetic regulation of immune cells. Immunological Reviews, 2022, 305, 5-8.	2.8	2
3	Mucus sialylation determines intestinal host-commensal homeostasis. Cell, 2022, 185, 1172-1188.e28.	13.5	66
4	When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. Science Advances, 2022, 8, eabj3286.	4.7	35
5	Multi-Dimensional Gene Regulation in Innate and Adaptive Lymphocytes: A View From Regulomes. Frontiers in Immunology, 2021, 12, 655590.	2.2	12
6	Neuronal enhancers are hotspots for DNA single-strand break repair. Nature, 2021, 593, 440-444.	13.7	126
7	MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23. Immunity, 2021, 54, 514-525.e6.	6.6	30
8	Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science, 2021, 373, .	6.0	108
9	Granzyme A and CD160 expression delineates ILC1 with graded functions in the mouse liver. European Journal of Immunology, 2021, 51, 2568-2575.	1.6	28
10	PI3Kl̃ coordinates transcriptional, chromatin, and metabolic changes to promote effector CD8+ TÂcells at the expense of central memory. Cell Reports, 2021, 37, 109804.	2.9	13
11	Histone deacetylase 1 (HDAC1): A key player of T cell-mediated arthritis. Journal of Autoimmunity, 2020, 108, 102379.	3.0	31
12	Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. Immunity, 2020, 53, 745-758.e4.	6.6	46
13	Neuropeptide CGRP Limits Group 2 Innate Lymphoid Cell Responses and Constrains Type 2 Inflammation. Immunity, 2019, 51, 682-695.e6.	6.6	192
14	The Magnitude of IFN-γ Responses Is Fine-Tuned by DNA Architecture and the Non-coding Transcript of Ifng-as1. Molecular Cell, 2019, 75, 1229-1242.e5.	4.5	58
15	Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell, 2019, 176, 982-997.e16.	13.5	159
16	Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nature Immunology, 2019, 20, 890-901.	7.0	361
17	OP0194â€HISTONE DEACETYLASE 1 (HDAC1): A KEY MEDIATOR OF T CELLS FOR THE PATHOGENESIS OF RHEUMATOID ARTHRITIS. , 2019, , .		0
18	Retinoic Acid Receptor Alpha Represses a Th9 Transcriptional and Epigenomic Program to Reduce Allergic Pathology. Immunity, 2019, 50, 106-120.e10.	6.6	54

Han-Yu Shih

#	Article	IF	CITATIONS
19	Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science, 2019, 363, .	6.0	219
20	NCR ⁺ ILC3 maintain larger STAT4 reservoir via Tâ€BET to regulate type 1 features upon ILâ€⊋3 stimulation in mice. European Journal of Immunology, 2018, 48, 1174-1180.	1.6	33
21	Human retinoic acid–regulated CD161+ regulatory T cells support wound repair in intestinal mucosa. Nature Immunology, 2018, 19, 1403-1414.	7.0	86
22	Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Frontiers in Immunology, 2018, 9, 425.	2.2	43
23	Restoration of the type I IFN–IL-1 balance through targeted blockade of PTGER4 inhibits autoimmunity in NOD mice. JCI Insight, 2018, 3, .	2.3	11
24	The Transcription Factor T-bet Limits Amplification of Type I IFN Transcriptome and Circuitry in T Helper 1 Cells. Immunity, 2017, 46, 983-991.e4.	6.6	79
25	Epigenomic Views of Innate Lymphoid Cells. Frontiers in Immunology, 2017, 8, 1579.	2.2	26
26	Developmental Acquisition of Regulomes Underlies Innate Lymphoid Cell Functionality. Cell, 2016, 165, 1120-1133.	13.5	273
27	BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nature Immunology, 2016, 17, 851-860.	7.0	221
28	The Histone Variant MacroH2A1.2 Is Necessary for the Activation of Muscle Enhancers and Recruitment of the Transcription Factor Pbx1. Cell Reports, 2016, 14, 1156-1168.	2.9	49
29	Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. ELife, 2016, 5, .	2.8	74
30	Asymmetric Action of STAT Transcription Factors Drives Transcriptional Outputs and Cytokine Specificity. Immunity, 2015, 42, 877-889.	6.6	137
31	IL-7 coordinates proliferation, differentiation and Tcra recombination during thymocyte β-selection. Nature Immunology, 2015, 16, 397-405.	7.0	93
32	A discrete chromatin loop in the mouse Tcra-Tcrd locus shapes the TCRδ and TCRα repertoires. Nature Immunology, 2015, 16, 1085-1093.	7.0	56
33	Helper T Cell Plasticity: Impact of Extrinsic and Intrinsic Signals on Transcriptomes and Epigenomes. Current Topics in Microbiology and Immunology, 2014, 381, 279-326.	0.7	57
34	Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological Reviews, 2014, 261, 23-49.	2.8	76
35	Chromatin Architecture, CCCTC-Binding Factor, and V(D)J Recombination: Managing Long-Distance Relationships at Antigen Receptor Loci. Journal of Immunology, 2013, 190, 4915-4921.	0.4	34
36	<i>Tcra</i> gene recombination is supported by a <i>Tcra</i> enhancer- and CTCF-dependent chromatin hub. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3493-502.	3.3	79

Han-Yu Shih

#	Article	IF	CITATIONS
37	Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens-Johnson syndrome. Journal of Allergy and Clinical Immunology, 2011, 128, 1266-1276.e11.	1.5	237
38	Orchestrating T-cell receptor \hat{I}_{\pm} gene assembly through changes in chromatin structure and organization. Immunologic Research, 2011, 49, 192-201.	1.3	23
39	Regulation of TCRÎ ² Allelic Exclusion by Gene Segment Proximity and Accessibility. Journal of Immunology, 2011, 187, 6374-6381.	0.4	11
40	Distinct contracted conformations of the <i>Tcra/Tcrd</i> locus during <i>Tcra</i> and <i>Tcrd</i> recombination. Journal of Experimental Medicine, 2010, 207, 1835-1841.	4.2	47
41	Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenetics and Genomics, 2006, 16, 297-306.	0.7	583