Jianli Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5996620/publications.pdf

Version: 2024-02-01

393982 377514 1,267 47 19 34 citations g-index h-index papers 49 49 49 1505 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Shape-tunable polymeric Janus nanoparticles with hollow cavities derived from polymerization induced self-assembly based crosslinked vesicles. Chemical Communications, 2022, 58, 2228-2231.	2.2	4
2	Methylthiophene terminated D–݀–D molecular semiconductors as multifunctional interfacial materials for high performance perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 1862-1869.	2.7	4
3	Heterogeneous Catalysis for Oxidation of Alcohol via 1â€Methylâ€2â€azaadamanane <i>N</i> å€oxyl Immobilized on Magnetic Polystyrene Nanosphere. ChemistrySelect, 2022, 7, .	0.7	1
4	Efficient and continuous chemical conversion in a thin membrane comprising three-dimensional network trapping Ag nanoparticles. Applied Catalysis B: Environmental, 2022, 314, 121456.	10.8	9
5	Stabilizing Triglyceride in Methanol Emulsions via a Magnetic Pickering Interfacial Catalyst for Efficient Transesterification under Static Conditions. ACS Omega, 2021, 6, 14138-14147.	1.6	4
6	An efficient and recyclable Pickering magnetic interface biocatalyst: application in biodiesel production. Green Chemistry, 2021, 23, 966-972.	4.6	29
7	A Novel Spherical Crystallization Method Using Pickering Emulsions. Journal of Pharmaceutical Sciences, $2021, \ldots$	1.6	1
8	Magnetic Nanoparticles with In Situ Surface Growing Polymeric Brushes as Reactive Pickering Interfacial Catalysts for Biphasic Reactions. Journal of Physical Chemistry C, 2021, 125, 23736-23743.	1.5	7
9	Sulfonated polyaryletherketone with pendant benzimidazole groups for proton exchange membranes. Journal of Membrane Science, 2020, 597, 117626.	4.1	24
10	The origin of the unusual red-shifted aggregation-state emission of triphenylamine-imidazole molecules: excimers or a photochemical reaction?. Materials Chemistry Frontiers, 2020, 4, 1411-1420.	3.2	23
11	Cost-Effective Water-Soluble Poly(vinyl alcohol) as a Functional Binder for High-Sulfur-Loading Cathodes in Lithium–Sulfur Batteries. ACS Omega, 2020, 5, 8272-8282.	1.6	33
12	Polar Benzimidazole-Containing (Sulfonated) Poly(arylene ether ketone)s as Bifunctional Binders for Lithium–Sulfur Battery Cathodes with High Sulfur Loadings. ACS Applied Energy Materials, 2019, 2, 6732-6740.	2.5	20
13	CO ₂ -switchable Pickering emulsions: efficient and tunable interfacial catalysis for alcohol oxidation in biphasic systems. Chemical Communications, 2019, 55, 11079-11082.	2.2	29
14	Amphiphilic TEMPO-Functionalized Block Copolymers: Synthesis, Self-Assembly and Redox-Responsive Disassembly Behavior, and Potential Application in Triggered Drug Delivery. ACS Applied Polymer Materials, 2019, 1, 2282-2290.	2.0	17
15	Crosslinkable polyaryletherketone ultrafiltration membranes with solvent-resistant improvement. Materials Today Communications, 2019, 21, 100696.	0.9	3
16	Effect of trace hydrofluoric acid in a LiPF ₆ electrolyte on the performance of a Li–organic battery with an N-heterocycle based conjugated microporous polymer as the cathode. Journal of Materials Chemistry A, 2019, 7, 16347-16355.	5.2	31
17	TEMPO-Functionalized Aromatic Polymer as a Highly Active, pH-Responsive Polymeric Interfacial Catalyst for Alcohol Oxidation. Journal of Physical Chemistry C, 2019, 123, 9066-9073.	1.5	19
18	Pickering Interfacial Catalysts with CO ₂ and Magnetic Dual Response for Fast Recovering in Biphasic Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16156-16163.	4.0	42

#	Article	IF	CITATIONS
19	TEMPO in Chemical Transformations: From Homogeneous to Heterogeneous. ACS Catalysis, 2019, 9, 2777-2830.	5.5	125
20	In situ fabrication of cobalt nanoflowers on sulfonated and fluorinated poly (arylene ether) Tj ETQq0 0 0 rgBT /Ove 481-490.	rlock 10 T 2.9	f 50 707 Td 11
21	Photo-irradiated $\langle i \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ isomerization reaction of star-shaped isomers containing two cyanostilbene arms with charge transfer excited states. Physical Chemistry Chemical Physics, 2018, 20, 28279-28286.	1.3	18
22	Novel organic base-immobilized magneto-polymeric nanospheres as efficient Pickering interfacial catalyst for transesterification. Journal of Catalysis, 2018, 368, 190-196.	3.1	26
23	Significant and Synergistic Intensification of Aerobic Oxidation of Activated Alcohols in Water at Ambient Condition by Adding Perfluoroâ€6urfactant. ChemistrySelect, 2018, 3, 7856-7861.	0.7	3
24	Preparation of poly(ionic liquid) nanoparticles through RAFT/MADIX polymerization-induced self-assembly. Polymer Chemistry, 2017, 8, 5469-5473.	1.9	12
25	Pickering high internal phase emulsions stabilized by worm-like polymeric nanoaggregates. Polymer Chemistry, 2017, 8, 5474-5480.	1.9	43
26	Novel high TEMPO loading magneto-polymeric nanohybrids: An efficient and recyclable Pickering interfacial catalyst. Journal of Catalysis, 2017, 353, 192-198.	3.1	23
27	CO ₂ -Switchable Membranes Prepared by Immobilization of CO ₂ -Breathing Microgels. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44146-44151.	4.0	28
28	Fluoro-methyl sulfonated poly(arylene ether ketone-co-benzimidazole) amphoteric ion-exchange membranes for vanadiumĀredox flow battery. Electrochimica Acta, 2017, 258, 360-370.	2.6	39
29	Linear amphiphilic TEMPO-grafted poly(ether sulfone) as polymeric interfacial catalyst: Synthesis, self-assembly behavior, and application. Reactive and Functional Polymers, 2016, 105, 134-139.	2.0	12
30	A Green Strategy to Enhance a Liquid–Liquid Heterogeneous Reaction with a Magnetic Recyclable Pickering Emulsion. ChemCatChem, 2015, 7, 616-624.	1.8	25
31	An insight into the intensification of aqueous/organic phase reaction by the addition of magnetic polymer nanoparticles. Chemical Engineering Journal, 2015, 280, 265-274.	6.6	16
32	The stability of covalently immobilization of TEMPO on the polymer surface through ionic liquid linkage: a comparative and model research. E-Polymers, 2015, 15, 39-44.	1.3	9
33	Dielectric and gas transport properties of the films of thermally stable poly(arylene ether ketone)s containing contentâ€tunable benzimidazole moiety. Journal of Applied Polymer Science, 2015, 132, .	1.3	7
34	Solidâ€phase extraction based on chloromethylated polystyrene magnetic nanospheres followed by gas chromatography with mass spectrometry to determine phthalate esters in beverages. Journal of Separation Science, 2014, 37, 3677-3683.	1.3	15
35	Magnetic Superhydrophobic Polymer Nanosphere Cage as a Framework for Miceller Catalysis in Biphasic Media. ChemCatChem, 2014, 6, 1626-1634.	1.8	31
36	Preparation and characterization of poly(vinylidene fluoride) flat sheet membrane with Tg tunable amphiphilic terpolymer as membrane additive. Desalination, 2014, 338, 49-56.	4.0	6

#	Article	IF	CITATIONS
37	The indirect conversion of glycerol into 1,3-dihydroxyacetone over magnetic polystyrene nanosphere immobilized TEMPO catalyst. Chemical Engineering Journal, 2013, 229, 234-238.	6.6	15
38	Magnetic Polystyrene Nanosphere Immobilized TEMPO: A Readily Prepared, Highly Reactive and Recyclable Polymer Catalyst in the Selective Oxidation of Alcohols. ChemCatChem, 2013, 5, 307-312.	1.8	45
39	Membranes of Poly (Vinyl Butyral) (PVB) or Cationic PVB (CPVB) Blended with Poly (Vinylidene) Tj ETQq1 1 0.784: Hydrophilicity. Journal of Macromolecular Science - Physics, 2012, 51, 1851-1863.	314 rgBT /0.4	Overlock 10 6
40	Highly compatible acid–base blend membranes based on sulfonated poly(ether ether ketone) and poly(ether ether ketone-alt-benzimidazole) for fuel cells application. Journal of Membrane Science, 2012, 415-416, 644-653.	4.1	50
41	Novel Process for 1,3-Dihydroxyacetone Production from Glycerol. 1. Technological Feasibility Study and Process Design. Industrial & Engineering Chemistry Research, 2012, 51, 3715-3721.	1.8	20
42	Characterization of molecular interaionic and intraionic crosslinkable sulfonated poly(ether ether) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50
43	Rheology behavior of highâ€density polyethylene/diluent blends and fabrication of hollowâ€fiber membranes via thermally induced phase separation. Journal of Applied Polymer Science, 2010, 118, 2186-2194.	1.3	7
44	Alternating Copolymer of Sulfonated Poly(ether ether ketoneâ€benzimidazole)s (SPEEKâ€BI) Bearing Acid and Base Moieties. Macromolecular Chemistry and Physics, 2008, 209, 1495-1502.	1.1	25
45	Dead-end filtration properties of microporous polypropylene membranes with different gas permeation rates. Desalination, 2006, 192, 68-73.	4.0	1
46	Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics, 2006, 44, e411-e414.	2.1	315
47	Preparation of poly(4-methyl-1-pentene) asymmetric or microporous hollow-fiber membranes by melt-spun and cold-stretch method. Journal of Applied Polymer Science, 2006, 100, 2131-2141.	1.3	24